DOI QR코드

DOI QR Code

The effect of methyl yellow concentrations on the optical properties of polyvinyl chloride-methyl yellow film as a radiation dosimeter

  • Muhamad Yasin Yunus (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia) ;
  • Farah Nurlidar (Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency) ;
  • Santoso Soekirno (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia) ;
  • Rizka Fitriana (Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency) ;
  • Marrisa Arlinkha Ega Putri (Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency) ;
  • Arif Rachmanto (Research Center for Radiation Detection and Nuclear Analysis Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency) ;
  • Adam Tirta Kusuma (Research Facilities and Science Technology Park, National Research and Innovation Agency)
  • Received : 2023.12.20
  • Accepted : 2024.05.14
  • Published : 2024.10.25

Abstract

A dosimetry system's ability to monitor absorbed doses is crucial for the quality assurance and control of products that have been exposed to radiation. Here, we propose a polyvinyl chloride (PVC)-methyl yellow (MY) film as a potential dosimeter for irradiation facilities. The PVC-MY film was prepared with a simple solvent-casting method at different MY concentrations from 0.3 to 1.2 mM. To evaluate the dosimeter's performance, the film was exposed to gamma-irradiation with irradiation doses of 0-25 kGy. The optical characteristics of the films examined using a UV-Vis spectrophotometer showed that the color of the films changed from yellow to red with increasing irradiation doses, and the color change sensitivity of the films increased with increasing MY concentrations. The absorption spectra of the irradiated PVC-MY films showed three maximum absorption peaks at 417, 522, and 547 nm. As irradiation doses increased, the film absorption at 417 nm decreased, while the film absorption at 522 and 547 nm increased. The film's stability studies suggest storage of the irradiated film in a cold-dark conditions is recommended to prevent damage and maintain response stability. The findings in this study emphasize the potential of the PVC-MY film as a dosimeter for irradiation facilities.

Keywords

Acknowledgement

This work was partly supported by the Budget Implementation List (DIPA; 2022) of the Research Organization for Nuclear Energy, National Research and Innovation Agency.

References

  1. A. Ashfaq, M.C. Clochard, X. Coqueret, C. Dispenza, M.S. Driscoll, P. Ulanski, M. Al-Sheikhly, Polymerization reactions and modifications of polymers by ionizing radiation, Polymers 12 (12) (2020) 1-67, https://doi.org/10.3390/polym12122877. 
  2. D. Darwis, B. Abbas, F. Nurlidar, D.P. Putra, Radiation processing of polymers for medical and pharmaceutical applications, Macromol. Symp. 353 (1) (2015) 15-23, https://doi.org/10.1002/masy.201550302. 
  3. D. Kim, H. Song, S. Lim, M. Jo, D. Song, C. Jo, Shelf-life extension of preservative-free hydrated feed using gamma pasteurization and its effect on growth performance of eel, Radiat. Phys. Chem. 81 (8) (2012) 1095-1097, https://doi.org/10.1016/j.radphyschem.2011.11.004. 
  4. P.R. Oberoi, C.A. Fuke, C.B. Maurya, P.A. Mahanwar, Comparative study of two azo dyes using Triphenyl-Tetrazolium Chloride (TTC) on gamma irradiation induced film dosimeter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 466 (January) (2020) 82-89, https://doi.org/10.1016/j.nimb.2020.01.019. 
  5. R.a. Wach, H. Mitomo, F. Yoshii, T. Kume, Radiation processing of biodegradable polymer (2) hydrogel from cellulose derivatives, Japan Atomic Energy Agency Reports 2 (2001) 174-175. 
  6. N. Yusof, N. Hilmy, Radiation biology of tissue radiosterilization, in: Comprehensive Biomedical Physics, vol. 7, Elsevier B.V, 2014, https://doi.org/10.1016/B978-0-444-53632-7.00813-3. 
  7. K. A. da Silva Aquino, Sterilization by gamma irradiation, Gamma Radiat., May (2012), https://doi.org/10.5772/34901. 
  8. F.M. Aldweri, M.H. Abuzayed, M.S. Al-Ajaleen, K.A. Rabaeh, Characterization of Thymol blue Radiochromic dosimeters for high dose applications, Results Phys. 8 (2018) 1001-1005, https://doi.org/10.1016/j.rinp.2018.01.050. 
  9. S.M. Gafar, M.A. El-Ahdal, A new developed radiochromic film for high-dose dosimetry applications, Dyes Pigments 114 (C) (2015) 273-277, https://doi.org/10.1016/j.dyepig.2014.11.021. 
  10. C.G. Soares, Radiochromic film dosimetry, Radiat. Meas. 41 (SUPPL. 1) (2006) 100-116, https://doi.org/10.1016/j.radmeas.2007.01.007. 
  11. W.W. Bradshaw, D.G. Cadena, G.W. Crawford, H.A. Spetzler, The use of alanine as a solid dosimeter, Radiat. Res. 17 (1) (1962) 11-21, https://doi.org/10.2307/3571206. 
  12. M.F. Desrosiers, Post-irradiation study of the alanine dosimeter, J. Res. National Institute of Standards Technol. 119 (2014) 277-295, https://doi.org/10.6028/jres.119.011. 
  13. S. Nanez, R.M. Uribe, Performance of the Harwell tape-tab alanine EPR dosimeter under typical production conditions. Effect of irradiation and storage temperature on the stability of the response, Radiat. Phys. Chem. 206 (August 2022) (2023) 110710, https://doi.org/10.1016/j.radphyschem.2022.110710. 
  14. P. Casolaro, L. Campajola, G. Breglio, S. Buontempo, M. Consales, A. Cusano, A. Cutolo, F. Di Capua, F. Fienga, P. Vaiano, Real-time dosimetry with radiochromic films, Sci. Rep. 9 (1) (2019) 1-11, https://doi.org/10.1038/s41598-019-41705-0. 
  15. J.D. Cho, J. Son, C.H. Choi, J.S. Kim, H.G. Wu, J.M. Park, J. Kim, Improvement in sensitivity of radiochromic 3D dosimeter based on rigid polyurethane resin by incorporating tartrazine, PLoS One 15 (3) (2020) 1-16, https://doi.org/10.1371/journal.pone.0230410. 
  16. V.T. Anh, T.D. Nghiep, T. Van Giap, To determine dose response curves of dyed polyvinyl alcohol films irradiated with gamma-rays, Open J. Saf. Sci. Technol. 8 (1) (2018) 13-19, https://doi.org/10.4236/ojsst.2018.81002. 
  17. M. Kattan, Y. Daher, H. Alkassiri, A high-dose dosimeter-based polyvinyl chloride dyed with malachite green, Radiat. Phys. Chem. 76 (7) (2007) 1195-1199, https://doi.org/10.1016/j.radphyschem.2006.12.004. 
  18. M. Kattan, H. al Kassiri, Y. Daher, Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry, Appl. Radiat. Isot. 69 (2) (2011) 377-380, https://doi.org/10.1016/j.apradiso.2010.11.006. 
  19. K.A. Rabaeh, S.A. Aljammal, M.M. Eyadeh, K.M. Abumurad, Methyl thymol blue solution and film dosimeter for high dose measurements, Results Phys. 23 (2021) 103980, https://doi.org/10.1016/j.rinp.2021.103980. 
  20. K.A. Rabaeh, A.A. Basfar, I.M.E. Hammoudeh, Novel polyvinyl alcohol film dosimeter containing 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye for high dose application, Nucl. Eng. Technol. 55 (9) (2023) 3383-3387, https://doi.org/10.1016/j.net.2023.06.011. 
  21. S.A. Rani, I.S. Mustafa, A.A. Rahman, N.C. Khalib, Dose response of radiation-induced low-dose film dosimeter of inorganic salt and red cresol dye blended PVA, Mater. Today: Proc. 66 (2022) 3977-3980, https://doi.org/10.1016/j.matpr.2022.04.715. 
  22. Y.S. Soliman, A.A. Basfar, R.I. Msalam, A radiochromic film based on leucomalachite green for high-dose dosimetry applications, Radiat. Meas. 62 (2014) 45-51, https://doi.org/10.1016/j.radmeas.2014.01.004. 
  23. S.R. Allayarov, M.P. Confer, S.A. Bogdanova, T.N. Rudneva, U.Y. Allayarova, I. F. Shaimukhametova, S.V. Demidov, D.V. Mishchenko, E.N. Klimanova, T. E. Sashenkova, S.D. Chekalina, S.M. Aldoshin, D.A. Dixon, Characteristics and radiolysis behavior of polyvinylchloride under accelerated proton and γ-irradiation, Radiat. Phys. Chem. 201 (August) (2022), https://doi.org/10.1016/j.radphyschem.2022.110436. 
  24. N. Boutouchent-Guerfi, A. Benaboura, A. Dib, Degradation studies on PVC plasticized submitted to gamma radiation up to 50 KGy, Proceed. Third Int. Symposium on Mater. Sustainable Develop. 2 (2018) 358-364, https://doi.org/10.1007/978-3-319-89707-3_41. 
  25. M. Kattan, Y. Daher, The use of polyvinyl chloride films dyed with methyl red in radiation dosimetry, Int. J. Radiat. Res. 14 (3) (2016) 263-267, https://doi.org/10.18869/acadpub.ijrr.14.3.263. 
  26. V. Labed, H. Obeid, K. Ressayre, Effect of relative humidity and temperature on PVC degradation under gamma irradiation: evolution of HCl production Yields, Radiat. Phys. Chem. 84 (2013) 26-29, https://doi.org/10.1016/j.radphyschem.2012.06.052. 
  27. H. Levine, W.L. McLaughlin, A. Miller, Temperature and humidity effects on the gamma-ray response and stability of plastic and dyed plastic dosimeters, Radiat. Phys. Chem. 14 (1979) 551-574, https://doi.org/10.1016/0146-5724(79)90091-8. 
  28. H. Kahlert, G. Meyer, A. Albrecht, Colour maps of acid-base titrations with colour indicators: how to choose the appropriate indicator and how to estimate the systematic titration errors, ChemTexts 2 (2) (2016) 1-28, https://doi.org/10.1007/s40828-016-0026-4. 
  29. K.M. Tawarah, H.M. Abu-Shamleh, A spectrophotometric study of the tautomeric and acid- base equilibria of methyl orange and methyl yellow in aqueous acidic solutions, Dyes Pigments 16 (3) (1991) 241-251, https://doi.org/10.1016/0143-7208(91)85014-Y. 
  30. S.M. Gafar, M.A. El-Kelany, S.R. El-Shawadfy, Spectrophotometric properties of azo dye metal complex and its possible use as radiation dosimeter, J. Radiat. Res. Appl. Sci. 11 (3) (2018) 190-194, https://doi.org/10.1016/j.jrras.2018.01.004. 
  31. A. Kovacs, M. Baranyai, L. Wojnarovits, A. Moussa, I. Othman, W.L. McLaughlin, Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry, Radiat. Phys. Chem. 55 (5-6) (1999) 799-803, https://doi.org/10.1016/S0969-806X(99)00231-5. 
  32. J. Colombani, V. Labed, C. Joussot-Dubien, A. Perichaud, J. Raffi, J. Kister, C. Rossi, High doses gamma radiolysis of PVC: mechanisms of degradation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 265 (1) (2007) 238-244, https://doi.org/10.1016/j.nimb.2007.08.053. 
  33. P. Oberoi, C. Maurya, P. Mahanwar, Effect of gamma irradiation dose on phthalate free PVC dyed thin film dosimeter, J. Mater. Eviron. Sci. 10 (6) (2019) 533-542. 
  34. A. Doyan, S. Susilawati, S. Prayogi, M.R. Bilad, M.F. Arif, N.M. Ismail, Polymer film blend of polyvinyl alcohol, trichloroethylene and cresol red for gamma radiation dosimetry, Polymers 13 (11) (2021), https://doi.org/10.3390/polym13111866. 
  35. J. Naime, M. S. Al Mamun, M. Aly Saad Aly, M. Maniruzzaman, M.M.R. Badal, K.M. R. Karim, Synthesis, characterization and application of a novel polyazo dye as a universal acid-base indicator, RSC Adv. 12 (43) (2022) 28034-28042, https://doi.org/10.1039/d2ra04930a. 
  36. N. Magdy, S. Gafar, Development of two dosimetry systems based on basic violet dye for possible use as radiation dosimeters, Pigment Resin Technol. 51 (2) (2022) 204-211, https://doi.org/10.1108/PRT-11-2020-0118.