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b Higher Polytechnic School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain   

A R T I C L E  I N F O   

Keywords: 
Spent fuel pools 
Nuclear services 
Automatic speech recognition 
Audio transcription task 

A B S T R A C T   

In this article, we propose and explore a novel step in the digitization of the mapping of the spent fuel pool of 
nuclear power plants, in which the audio signal from the operator’s microphone is used to obtain the identifi-
cation codes of those components that are in each of the cells of the pool. In this way, we have not only an 
acquisition system but also a verification system that can be used in combination with the outcome of the 
analysis of the video signal. We developed an algorithm that uses at its core one of the latest models of multi-
lingual Automatic Speech Recognition to transcribe audio signal, and with a post-processing of the timed 
transcriptions we build the identification code of fuel heads and other components. Results show a very high 
accuracy in audios from real recording of Spanish nuclear facilities, and the methodology proposed is easily 
extensible to other nuclear facilities in the world.   

1. Introduction 

The operation of all types of nuclear reactors generates spent nuclear 
fuel, which must be safely managed once removed from the reactor core. 
Spent fuel is considered waste in some circumstances and a potential 
future energy resource in others. Both management options entail a 
series of stages, which will necessarily include the storage of spent fuel 
for a period. The safety aspects of storage are the same as those applied 
to radioactive waste and are outlined in publication GSR Part 5 [1]. 

Storage options include wet storage, in some form of pool, and dry 
storage, in a specially constructed facility or casks. Initially this material 
is stored in the spent fuel pool (SFP) of the nuclear plant to allow for 
cooling. The fuel elements are placed in racks at the bottom of the pool, 
strategically located to limit the separation distances between fuel ele-
ments to maintain the required temperature and critical conditions. The 
International Atomic Energy Agency (IAEA) stipulates in its technical 
guidelines that each reactor should maintain a database providing uni-
form and standardized data on a common basis and with an appropriate 
level of detail [2]. 

These data can also be combined to track and estimate inventories of 
nuclear materials. The most basic data for spent fuel management in-
cludes inventories of spent fuel in terms of quantity, location, and their 
characteristics, often used for analysis or planning. These data are at 

least required at the national level by the regulatory body, which in 
Spain is the Consejo de Seguridad Nuclear (CSN). 

In the CSN Safety Guide 1.7 [3] regarding the information to be 
provided by the operator of the nuclear facility, particularly related to 
irradiated fuel stored in the pool, it is required to include (among many 
other details).  

• The identification of the fuel element: A unique identification 
code for each element, assigned by the manufacturer. This identifi-
cation code should be unique at least within the inventory of each 
individual reactor, and usually consists of two letters and two digits.  

• The location within the pool. 

As a result of these technical instructions by regulatory bodies, it is 
necessary to carry out a task known as pool mapping, registering the fuel 
elements and any other components present in each of the cells of the 
SFP racks. 

Currently, pool mapping in Spanish SFPs is performed by a team of 
operators divided into two groups. The first one uses an underwater 
video camera attached to a pole, which is moved through each cell of the 
pool racks using a crane bridge. The operator positions the camera 
focusing on the interior of the cell to visualize its contents, and partic-
ularly their identification codes. The second group of operators is 
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located at the edge of the pool, where one person is responsible for 
adjusting the camera’s focus and lighting, while recording an audio 
signal with keywords including coordinates of the cell being viewed and 
identification codes of the fuel elements and other components observed 
in the real-time video signal. Other operators in this second group are 
responsible for transcribing the codes into a file and verifying that the 
observed component matches what is expected according to the pool 
map provided by the nuclear facility at the beginning of the campaign. 
This operation is highly susceptible to human errors. Therefore, addi-
tional double checks that do not increase costs substantially are very 
valuable. 

In this article we propose, explore and validate the partial automa-
tion of the creation of pool maps in Spanish nuclear facilities, by using 
state-of-the-art Automatic Speech Recognition (ASR) technology and 
evaluating its performance in real data obtained in the normal pool 
mapping operation of all the nuclear plants in Spain. Previous works 
have already proposed the idea of using ASR for the partial automati-
zation of spent nuclear fuel. For instance, in Ref. [4] the authors present 
a demo mobile app that could help transcribe speech for different tasks, 
mentioning spent nuclear fuel inspection as one of the possible appli-
cations, but no evaluation on real data is presented. In a recent survey of 
deep learning usage in the nuclear industry [5], the authors mention the 
possibility of processing audio for different tasks in the nuclear industry, 
but do not mention explicitly spent fuel management as one of them, just 
suggesting that deep learning in general can be applied to this problem. 

The main contributions of our article are therefore.  

- To the best of our knowledge, this article presents the first complete 
application and thorough evaluation of state-of-the-art ASR tech-
nology in the context of spent nuclear fuel management on real data.  

- Results show a high level of precision, robustness and reliability, 
demonstrating that the current ASR technology can be applied to this 
problem, either for the partial automation of the spent fuel pool 
mappings or as a double check to reduce the probability of human 
errors.  

- The system developed can operate in real time and includes ASR 
transcription and a specific post-processing component that are 
described in detail.  

- Given the architecture of the system proposed and the capabilities of 
the ASR system employed, we argue that our proposed architecture 
can be easily applied to other facilities and other languages 
worldwide. 

The rest of this article is organized as follows. Section 2, briefly in-
troduces the current state of the art in Automatic Speech Recognition. 
Section 3, describes the election of the base model for transcription of 
audio signal. Results obtained on stored videos are shown in Section 4. A 
discussion about future improvements and conclusions are presented in 
Section 5 and Section 6 respectively. 

2. State of art in Automatic Speech Recognition 

Automatic speech recognition (ASR) models are used for the task of 
transforming speech to text, often referred to as transcription. The ac-
curacy of these models have been significantly boosted since deep neural 
network (DNN) based hybrid model [6] was adopted a decade ago. This 
breakthrough used DNN to replace the traditional Gaussian mixture 
model for the acoustic likelihood evaluation, while keeping all the 
components such as the acoustic model, language model, and lexicon 
model, etc., as a hybrid ASR system. More recently, the speech com-
munity had a new breakthrough by transiting from hybrid modeling to 
end-to-end (E2E) neural models [7,8] which directly translates an input 
speech sequence into an output token sequence using a single neural 
network. 

Models have achieved human parity [9] in certain tasks, which 
means that models are able to transcribe human speech with the same or 

better accuracy than humans. However, due to the large amounts of data 
required by DNN-based models, most of these advances have been 
restricted to a few languages. Besides, performance degraded impor-
tantly when testing in a different corpus. 

Recently, there has been a paradigm shift in Natural Language Pro-
cessing (NLP) research with the advent of the Transformer model [10]. 
These models have found application as pre-trained models such as 
Bidirectional Encoder Representations from Transformers (BERT) [11]. 
These models first use unlabeled data (raw text) for pre-training and are 
then fine-tuned for a downstream task using labeled task-specific data. 
The intuition behind this approach is that the model can learn features 
from unlabeled data that can be shared across tasks. This idea has been 
quickly exported to other fields, including ASR. 

2.1. Multilingual ASR models 

Multilingual ASR tackles the task in multiple languages with the 
same model or pipeline. Multilingual Language Models [12] are pre-
trained on a large amount of unlabeled text from multiple languages 
(around 100) and then fine-tuned for a particular language and task. 
These models have shown impressive cross-lingual transfer capabilities, 
leading to performance gains on languages that have no labeled data 
(through zero-shot learning) or a small amount of labeled data (few-shot 
learning). 

Recently, self-supervised learning (SSL) has been used to pre-train an 
encoder on unlabeled data using contrastive loss. In this setup, the 
model learns a general high-level contextual representation of the input 
data which can potentially be used for any downstream task. The 
training process is divided into two steps [13].  

⁃ Learning an encoder which maps the raw audio to a high-level 
compact representation, usually done using Convolutional Neural 
Networks (CNNs).  

⁃ Reconstruct the future frames given the high-level features, using a 
strong auto-regressive model such as a Transformer. 

These pre-trained audio encoders, known as Wav2Vec2.0, learn 
high-quality representations of speech, but because they are purely 
unsupervised, they lack an equivalently performant decoder mapping 
those representations to useable outputs, necessitating a fine-tuning 
stage to perform a task such as speech recognition. The two most 
downloaded ASR models [14,15] in the popular AI platform huggingface 
(huggingface.co) at the time of writing this manuscript were derived 
from this approach. 

2.2. Whisper. Multilingual transcription model 

An alternative to fine-tunning purely unsupervised models is the one 
proposed by OpenAI with their Whisper models [16]. These models, 
released in 2023, are Transformer models trained on weakly supervised 
data, but with an order of magnitude more data than previous systems: 
680,000 h of labeled audio data, equivalent to over 70 years of contin-
uous speech. This allows these models to work well with existing data-
sets and new data even with a zero-shot approach, removing the need for 
any dataset specific fine-tuning to achieve accurate results. 

These models are trained for speech recognition and speech trans-
lation tasks, and they can be in 5 different sizes, summarized in Table 1. 
Over many existing ASR systems, Whisper models exhibit improved 
robustness to accents, background noise, and technical language, as well 

Table 1 
Comparison of the versions of Whisper. Parameters is the number of trainable 
parameters in millions.  

VERSION Tiny Base Small Medium Large 

PARAMETERS 39 74 244 769 1550  
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as zero-shot translation from multiple languages into English, and their 
accuracy on speech recognition and translation is near the state-of-the- 
art level even in a zero-shot approach, and also in par with expert human 
transcribers. In that sense, Whisper has opened a new level of perfor-
mance and applicability of ASR technology establishing a new state-of- 
the-art. The most recent developments, such as Google Gemini [17], 
released in December 2023, compares its performance against the 
state-of-the-art established by Whisper. One of the Whisper models 
(Whisper-Large-v3) [18] is the trendiest ASR model, and the 6th most 
downloaded model in the popular AI platform huggingface (hugging-
face.co) at the time of writing this manuscript. 

However, because the models are trained in a weakly supervised 
manner using large-scale noisy data, predictions may include text that is 
not actually spoken in the audio input (e.g., hallucinations). This is 
thought to occur because, given their general knowledge of language, 
the models combine the attempt to predict the next word in the audio 
with the attempt to transcribe the audio itself. It is a common situation in 
natural language processing with these models, even in Large Language 
Models (LLMs) such as Chat-GPT3. 

Whisper models perform unevenly across languages, and we observe 
lower accuracy on low-resource and/or low-discoverability languages or 
languages where there is less training data. They also exhibit disparate 
performance on different accents and dialects of languages, which may 
include a higher word error rate across speakers of different genders, 
races, ages, or other demographic criteria. In addition, the sequence-to- 
sequence architecture of the model makes it prone to generating re-
petitive texts, which can be mitigated to some degree by beam search 
and temperature scheduling. 

Another common problem in the ASR systems is that they employ 
heuristic sliding window style approaches, which are prone to errors due 
to overlapping or incomplete audio (e.g., words being cut halfway 
through). Whisper, in this case, proposes a buffered transcription 
approach that relies on accurate timestamp prediction to determine the 
amount to shift the subsequent input window by, but such a method is 
prone to severe drifting since timestamp inaccuracies in one window can 
accumulate to subsequent windows. The hand-crafted heuristics 
employed have achieved limited success. 

For these reasons new models have been developed, which are 
considered variants of the Whisper model since they are based on the use 
of these as a base, and new functions are added to solve or improve as far 
as possible the problems that these models present, without losing their 
high accuracy. 

2.2.1. WhisperX 
One of such new models is WhisperX [19], a system for efficient 

speech transcription of long-form audio with accurate word-level 
timestamps. It consists of three additional stages to Whisper 
transcription.  

⁃ Pre-segmenting the input audio with an external Voice Activity 
Detection (VAD) model.  

⁃ Cutting and merging the resulting VAD segments into approximately 
30 s input chunks with boundaries lying on minimally active speech 
regions enabling batched whisper transcription. 

⁃ Forced alignment with an external phoneme model to provide ac-
curate word-level timestamps. 

These approaches have several drawbacks, including.  

* The need to find one wav2vec model per language to support, which 
does not scale well with the multi-lingual capabilities of Whisper. 

* The need to handle (at least) one additional neural network (wav2-
vec model), which consumes memory.  

* The need to normalize characters in Whisper transcription to match 
the character set of the wav2vec model. This involves awkward 
language-dependent conversions, such as converting numbers to 

words (“2” → “two”), symbols to words (“%” → “percent”, “e” → 
“euro(s)”). 

* The lack of robustness around speech disfluencies (fillers, hesita-
tions, repeated words, etc.) that are usually removed by Whisper. 

2.2.2. Whisper-timestamped 
One solution to the drawbacks of the WhisperX model is the 

approach based on Dynamic Time Warping (DTW) [20] applied to 
cross-attention weights, which does not have these drawbacks. DTW is 
the name of a class of algorithms for comparing series of values with 
each other. The rationale behind DTW is, given two time series, to 
stretch or compress them locally to make one resemble the other as 
much as possible. The distance between the two is computed, after 
stretching, by summing the distances between individually aligned el-
ements. This technique is useful, for example, when one is willing to find 
a low distance score between the sound signals corresponding to utter-
ances “now” and “nooow” respectively, insensitive to the prolonged 
duration of the/o/sound. 

One model that employs this approach is Whisper-timestamped [21], 
which we will use in this article. As in the previous case, it is a model 
that can be considered as a variant of the Whisper models, because it is 
an implementation to predict word timestamps and provide a more 
accurate estimation of speech segments when transcribing with Whisper 
models. 

3. Proposed methods 

We have chosen to use the Whisper-timestamped model, described in 
the last section, using the ‘large’ version of the Whisper model (see 
Table 1) as model base. It obtains the transcription of the audio with 
great precision, and more useful information for our task, such as the 
timestamps of key words, which are of interest for our final purpose. 

To extract the information of interest from the complete audio 
transcript (i.e., the cell coordinates and the codes of the fuel elements, or 
of other components) we make use of keywords that the operator always 
says during the recording, which indicate the time from which the codes 
are said. In addition, the use of the International Radiotelephony 
Spelling Alphabet (also known as NATO phonetic alphabet) facilitates 
the identification of characters that are letters. Fig. 1 shows the flow 
diagram of the proposed method, detailing the way in which the 
developed system, starting from an audio signal, extracts the required 
information. 

3.1. Word error rate (WER) 

The Word Error Rate (WER) is the most common metric used to 
evaluate the accuracy of an ASR system, it represents the transcription 
error rate by comparing the total number of incorrect, deleted, or 
inserted words with respect to the reference transcription. It is expressed 
as a percentage and is calculated using the formula: 

WER=
S + D + I

N
× 100 (1)  

Where S is the number of substitutions (incorrect words), D is the 
number of deletions (omitted words), It is the number of insertions 
(inserted words), and N is the total number of words in the reference 
transcription. 

4. Transcription in video files 

First, to test the selected model, we used stored videos, not an audio 
signal in real time, from previous pool mappings in five Spanish nuclear 
power plants (NPP-1, NPP-2, NPP-3, NPP-4, NPP-5). An example of a 
transcription obtained by a person (reference) and a transcription ob-
tained by the model (transcription) is shown below. 
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- Reference - “… posicion 30 bravo delta elemento alpha hotel 42 no 
lleva insert posicion 30 bravo charlie elemento alpha lima 59 no 
lleva insert posicion 30 bravo bravo elemento sierra alpha 44 no 
lleva insert posicion 30 alpha tango elemento alpha golf 51 no lleva 
insert posicion 30 alpha sierra elemento alpha golf 35 no lleva insert 
posicion 30 alpha romeo elemento alpha golf 17 no lleva insert 
posicion 30 alpha quebec elemento alpha echo 03 no lleva insert, …”  

- Transcription – “… posicion 30 bravo delta elemento alfa hotel 42 
no lleva insert posicion 30 bravo charly elemento alfa lima 59 no 
lleva insert posicion 30 bravo bravo elemento sierra alfa 44 no lleva 
insert posicion 30 alfa tango elemento alfa golf 51 no lleva insert 
posicion 30 alfa sierra elemento alfa golf 35 no lleva insert posicion 
30 alfa romeo elemento alfa golf 17 no lleva insert posicion 30 alfa 
quebec elemento alfa eco 03 no lleva insert posición, …” 

In order to measure the WER, 2-min fragments of 6 random audios 
from each of the five nuclear plants were selected and manually tran-
scribed, for a total of 1 h of transcribed audio. In this sample, containing 
a total of 2369 reference words, Whisper-timestamped obtained a WER 
of 7.7 %. We analyzed the main sources of errors in this sample. Some 
illustrative examples of this analysis are shown in Table 2. As can be seen 
in the table, the main problems we have encountered are as follows.  

⁃ Words in a language other than the base language, Spanish has been 
selected as the base language, but some of the words used in the task 
correspond to the NATO phonetic alphabet, and they are in English.  

⁃ Context problems, the model used (Whisper) has a feature that is to 
predict the word of the next time instant depending on the context, 
which sometimes produces transcription errors, transcribing a word 
that clearly does not correspond to what is heard in the audio. 

As can be seen in Table 2, most of the transcription errors are related 
to the NATO phonetic alphabet and can be easily corrected by 

considering phonetically equivalent words in Spanish (alfa–alpha, eco-
–echo, etc.) to obtain the codes. From the point of view of the applica-
tion of this development, in which transcriptions are used to obtain the 
codes, the most important figure of merit is the accuracy in determining 
the codes, and this accuracy is very high, as shown in Table 3. 

At the beginning of this development, several challenges were 
identified that were carefully always considered, the first being the size 
of the model used, playing a fundamental role in processing speed and 
accuracy. The second is how the models were going to behave in front of 
different speakers (accents, pronunciation …) and finally, the precision 
obtained for audios that differ from the purpose of the models used, 
since they are developed to translate or transcribe conversations, predict 
the next word before saying it, where the context has a lot of influence. 
In the case in question, audios have no context, a single speaker, with 
many periods of silent time and using a coding language and mixing 
Spanish and English. 

The results obtained are considered exceptional, since in precision 
values are obtained that are considered acceptable for several reasons. 
Firstly, because it is a project developed with the feedback of the end 
client, and its specifications are met. Secondly, they are results analyzing 
samples from each of the facilities in which it operates, that is, results 
have been obtained from all possible cases. Thirdly, the samples from 
each facility analyzed consist of approximately 108,000s of audio, 
which makes a total of 540,000s analyzed. 

This application has been developed under the VS-Code program-
ming environment, in Python language and the Pytorch, Whisper- 
timestamp and Pyaudio libraries. This system run in computer with 
GPU NVIDIA RTX 4080. If used for post-processing, the model used is 
“large” whose average processing time for ~900s audios is ~150s. If 
used for real time, the model used is “small” and each ~30s fragment is 
processed in an average time of ~2s. 

Fig. 1. Flowchart of the proposed method.  

Table 2 
Analysis of five examples of 2-min audio fragments, comparing reference with 
transcription.  

EXAMPLE WER INSERTIONS DELETED SUBSTITUTED 

1 0,053 – – 5x(echo - eco) 
2 0,000 – – – 
3 0,259 posicion – 11x(alpha - alfa) ’), 1x(echo - 

eco), 1x(Charlie - charly) 
4 0,026 – delta 1x(kiko - kilo) 
5 0,098 0  7x(echo - eco), 3x(whiskey 

-whisky)  

Table 3 
Percentage of correctly recognized codes from the audio transcription of the 
videos of different nuclear facilities. Each nuclear facility includes about 1000 
fuel elements. Last column indicates the mean and standard deviation of the 
differences between the starting time of the code detected from the audio and 
from the video.  

FACILITIES SET ACCURACY (%) μ /σ (s) 

NPP-1 99.6 6.7/17.6 
NPP-2 98.7 − 1.4/39.5 
NPP-3 99.5 2.6/12.8 
NPP-4 99.3 0.0/5.8 
NPP-5 98.6 0.2/41.1  
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5. Future work 

Real-time streaming mode is useful in the situation at hand, since the 
analysis of the audio signal must be done simultaneously with the video 
signal, for live captioning. It means that the source speech audio has to 
be processed at the same time as it is recorded. The transcripts have to be 
delivered within a short additive latency, for example 1–3 s and the 
video signal must show the code at the same time. 

Regarding audio, there are some implementations of Whisper for 
streaming, but their approach is rather naive, like first record a 30-s 
audio segment, and then processing it. The latency of these methods is 
large, and the quality on the segment boundaries is low because a simple 
content unaware segmentation can split a word in the middle. Another 
option is using the simple but effective Local Agreement algorithm [22], 
which is one streaming policy that can be used to convert any 
full-sequence to full-sequence model to operate in simultaneous 
streaming mode. Such an implementation is Whisper-Streaming [23]. 

During the review process of this article, work has been done on the 
real-time processing part. The starting point was very high precision but 
using the largest model (large), and therefore having a processing time 
of approximately 5s per 30s audio fragment. 

Work has been done to reduce this time and finally a smaller model, 
(the ‘small’ model), has been chosen, along with some modifications to 
the parameters of the model itself, as well as the development of a real- 
time processing algorithm. With this, it has been possible to reduce 
transcription time to approximately 1–2s per 30s audio fragment and 
without reducing precision. 

6. Conclusion 

In this article, we propose and explore a novel step in the digitization 
of the process of obtaining the pool map of a nuclear power plant, in 
which we use the audio signal from the operator’s microphone to obtain 
the identification codes of those components that are in each of the cells 
of the SFP. Audio processing provides us with an automatic acquisition 
system of the codes and a verification system to use in combination with 
the processing of the video signal. 

We have developed an algorithm which uses at its core one of the 
latest models of multilingual ASR to transcribe audio signal. We build 
the identification code of fuel heads and other components with a post- 
processing of the transcriptions of the segments. Results show a very 
high level of accuracy in audio from stored videos. Besides, the meth-
odology proposed is easily extensible to other nuclear facilities in the 
world because the model allows several languages. 

This work presents a different and promising way of performing tasks 
in nuclear power plants by applying novel techniques such as Artificial 
Intelligence. The digitization of processes not only make it possible to 
avoid human failures when performing the task, but also reduce the 
number of people needed to carry out the task, thus reducing the 
exposure to possible radiation doses they may receive. 

This effort is included in a large-scale project, in processing the audio 
signal, but there is still room for improvement, such as the possibility of 
using the model to identify codes of other fuel element components, as 
well as extending it to other similar processes. 

Finally, it is worth mentioning the great novelty and importance of 
using advanced technologies in the nuclear field, something that is 
gradually being achieved. This project is a clear example of this trend 
and contributes to take a step forward, providing robustness and 
improving safety in the processes carried out in nuclear facilities. 
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