DOI QR코드

DOI QR Code

Analysis of information processing competency tasks in high school mathematics textbooks

수학적 모델링 관점에서의 고등학교 수학교과서 정보처리 역량 과제 분석

  • Oh Se Jun (Hongik University)
  • 오세준 (홍익대학교)
  • Received : 2024.08.26
  • Accepted : 2024.09.27
  • Published : 2024.09.30

Abstract

This study analyzes information processing competency tasks included in high school mathematics textbooks according to the 2015 Revised Curriculum from the perspective of mathematical modeling. The findings reveal that most tasks were focused on mathematical concepts without incorporating real-life contexts, with a significant emphasis on the use of engineering tools among the sub-elements of information processing competencies. These results suggest potential difficulties for students in developing mathematical thinking skills necessary for practical problem-solving. This study underscores the need for the 2022 Revised Curriculum to enhance the connection with real-life problems and to design tasks that reflect a balanced integration of the various sub-elements of information processing competencies.

본 연구는 현재 고등학교에서 사용 중인 수학 교과서를 대상으로, 정보처리 역량 과제를 수학적 모델링 관점에서 분석하였다. 정보처리 역량은 현대 수학교육에서 중요한 요소로 자리잡고 있으며, 이를 효과적으로 활용할 수 있는 능력은 디지털 대전환 시대에 더욱 강조되고 있다. 연구 결과, 대부분의 수학교과서에서 정보처리 역량 과제가 실생활 맥락을 반영하지 않은 상태로 제시되었으며, 위장된 맥락의 과제와 상황과 관련된 본질적 맥락을 포함한 과제는 전체 과제 중 소수에 그쳤다. 이러한 결과는 2022 교육과정에서 강조되는 수학적 모델링의 목표와는 상반되는 부분이 있음을 시사한다. 본 연구는 향후 고등학교 수학교과서에서 수학적 모델링을 효과적으로 반영하기 위해 상황과 관련된 본질적 맥락을 강화할 필요가 있음을 제안한다. 특히, 정보처리 역량 과제가 학생들의 수학적 사고력과 문제 해결능력을 증진시키기 위해서는 교과서 내의 과제가 상황과 관련된 본질적 맥락을 충분히 반영하고, 수학적 모델링을 통해 정보처리 역량의 하위 요소들을 균형 있게 다룰 수 있도록 개선되어야 한다.

Keywords

References

  1. Ko, S. S., Han, H. S., Kim, H. J., Lee, D. G., Shin, D. J., & Lee, C. H. (2020). A study on the textbook development based on mathematical modeling. Journal of Education and Culture. 26(5), 665-690. https://doi.org/10.24159/joec.2020.26.5.665
  2. Ministry of Education. (2020). Mathematics curriculum. Proclamation of the Ministry of Education #2020-236[Annex 8]. Author.
  3. Ministry of Education (2022). Mathematics curriculum. Proclamation of the Ministry of Education #2022-33[Annex 8]. Author.
  4. Kim, S. C. (2019). An analysis of actual application of primary mathematics textbooks in respect to core competency: Focused on the 2015 revision curriculum. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 9(4), 55-67. http://dx.doi.org/10.35873/ajmahs.2019.9.4.006
  5. Kim, E. H., & Kim, R. Y. (2020). Interpretation and application of information processing competency as mathematical competency: A case of middle school mathematics textbooks under the 2015 revised curriculum. The Mathematical Education, 59(4), 389-403. https://doi.org/10.7468/mathedu.2020.59.4.389
  6. Park, K., et al. (2015). A study on development of mathematics curriculum according to 2015 revised curriculum II (Report No. BD15120005). Korea Foundation for the Advancement of Science and Creativity.
  7. Park, M. W., & Jeon, I. H. (2020). Comparative analysis of information processing competency in elementary mathematics textbooks according to the 2009 and 2015 revised curriculum : Focused on statistics. Journal of Elementary Mathematics Education in Korea, 24(4), 343-369
  8. Park, W. H., & Choi-Koh, S. S. (2022). A comparative study on international baccalaureate diploma programme(IBDP) textbooks and Korean textbooks by the 2015 revised curriculum - Focus on function from a mathematical modeling perspective. Journal of the Korean School Mathematics Society, 25(2), 125-148. https://doi.org/10.30807/ksms.2022.25.2.002
  9. Park S. Y., & Han S. Y. (2018). Reconstruction and application of reforming textbook problems for mathematical modeling process. The Mathematical Education, 57(3), 289-309. https://doi.org/10.7468/mathedu.2018.57.3.289
  10. Seo, J. H., Yeun, J. K., & Lee, K. H. (2013). Development and application of teaching-learning materials for mathematically-gifted students by using mathematical modeling: Focus on Tsunami. School Mathematics, 15(4), 785-799.
  11. Oh, Y. Y., & Park, J. K. (2019). Exploring the task types of mathematical modeling applied to elementary school. The Journal of Korea Elementary Education, 30(1), 87-99. ttps://doi.org/10.20972/kjee.30.1.201903.87
  12. Lee, M. Y. & Kim, R. Y. (2022). Analyzing tasks in middle school mathematics textbooks under 2015 revised curriculum from the perspective of mathematical modeling. The SNU Journal of Education Research, 31(3), 85-113. https://doi.org/10.54346/sjer.2022.31.3.85
  13. Chang, H. Y., Choi, H. R., Kang, Y. J., & Kim, E. H. (2019). Development and application of mathematical modeling task for the lower grade elementary school students. Journal of Elementary Mathematics Education in Korea, 23(1), 93-117.
  14. Jung, H. Y., Lee, K. H., & Baek, D. H. (2018). Design for 〈Mathematical Task Inquiry〉 subject's task based on the mathematical modeling perspective, School Mathematics, 20(1), 149-169. https://doi.org/10.29275/sm.2018.03.20.1.149
  15. Jung, H. Y., Jung, J. H., & Lee, K. H. (2020). Analyzing tasks in the geometry area of 7 th grade of Korean and US Textbooks from the perspective of mathematical modeling. Journal of the Korean School Mathematics Society, 23(2), 179-201. http://doi.org/10.30807/ksms.2020.23.2.001
  16. Choi, H. (2022). A case study of lesson design based on mathematical modeling of pre-service mathematics teachers. Communications of Mathematical Education, 36(1), 59-72. https://doi.org/10.7468/jksmee.2022.36.1.59
  17. De Lange, J. (1999). Framework for classroom assessment in mathematics. Freudenthal Institute and National Center for Improving Student Learning and Achievement in Mathematics and Science.
  18. Galbraith, P., & Fisher, D. (2021). Technology and mathematical modelling: Addressing challenges, opening doors. Quadrante, 30(1), 198-121. https://doi.org/10.48489/quadrante.23710
  19. Geiger, V. (2011). Factors affecting teachers' adoption of innovative practices with technology and mathematical modeling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 305-314). Springer. https://doi.org/10.1007/978-94-007-0910-2_31
  20. Greefrath, G., & Siller, H. S. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth Congress the European Society for Research in Mathematics Education (pp. 2136-2145). Institut National De Recherche PEdagogique.
  21. Greefrath, G., Siller, H. S., & Weitendorf, J. (2011). Modelling considering the influence of technology. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 (pp. 315-329).
  22. Greefrath, G., & Siller, H. S. (2017). Modelling and simulation with the help of digital tools. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications (pp. 529-539). Springer. https://doi.org/10.1007/978-3-319-62968-1_44
  23. Greefrath, G., & Siller, H. S. (2018). GeoGebra as a tool in modeling processes. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education (pp. 363-374). Springer.
  24. Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modeling with digital tools-A quantitative study on mathematizing with dynamic geometry software. ZDM-The International Journal on Mathematics Education, 50(1-2), 233-244. https://doi.org/10.1007/s11858-018-0924-6
  25. Kohen, Z., & Orenstein, D. (2021). Mathematical modeling of tech-related real-world problems for secondary school-level mathematics. Educational Studies in Mathematics, 107, 71-91. https://doi.org/10.1007/s10649-020-10020-1