DOI QR코드

DOI QR Code

"It's easy. We got Desmos right here": The role of mathematical action technology in positioning students as mathematical explorers

  • Kristen Fye (Mathematics, University of North Carolina at Charlotte) ;
  • Samantha Fletcher (Mathematical Sciences, Middle Tennessee State University)
  • Received : 2024.03.12
  • Accepted : 2024.08.22
  • Published : 2024.09.30

Abstract

The positive impact on student learning and continued support of mathematical action technology (MAT) in classrooms deems a need to better understand what teaching practices maximize the affordances of MATs. The purpose of this study was to better understand the technology-centered teacher moves that allow students the opportunity to be positioned as mathematical explorers and sustain mathematical authority during a MAT task. In this case study of a MAT task designed to leverage the power of sliders in Desmos to explore key characteristics of the sine function, participants were two ninth-grade students (age 14), who engaged with a task-based interview. By coding the transcript of the task-based interview, the findings identified and described the teacher's actions with the technology that resulted in meaningful mathematical activity for the two students. Along with teacher actions with the technology, evidence showed the importance of the design of the MAT task and the ability of students to troubleshoot the technology. Ultimately, we identified important considerations for teaching mathematics with technology as well as several technology-centered teaching moves, leaving room for the students to perform as mathematical explorers. Applying these research methods for future cases could help generalize these technology-centered teaching strategies that position students as mathematical explorers, thus strengthening students' mathematics identities.

Keywords

References

  1. Aguirre, J., Herbel-Eisenmann, B., Celedon-Pattichis, S. Civil, M., Wilkerson, T., Stephan, M., Pape, S., & Clements, D. H. (2017). Equity within mathematics education research as a political act: Moving from choice to intentional collective professional responsibility. Journal for Research in Mathematics Education, 48(2), 124-147. https://doi.org/10.5951/jresematheduc.48.2.0124 
  2. Aguirre, J., Mayfield-Ingram, K., & Martin, D. B. (2013). The impact of identity in K-8 mathematics learning and teaching: Rethinking equity-based practices. National Council of Teachers of Mathematics. 
  3. Association of Mathematics Teacher Educators. (2006). Preparing teachers to use technology to enhance the learning of mathematics: A position of the Association of Mathematics Teacher Educators. Retrieved from http://www.amte.net/Approved%20AMTE%20Technology%20Position%20Paper.pdf 
  4. Association of Mathematics Teacher Educators. (2017). Standards for preparing teachers of mathematics. Available online at https://amte.net/standards 
  5. Ares, N., Stroup, W. M., & Schademan, A. R. (2008). The power of mediating artifacts in group-level development of mathematical discourses. Cognition and Instruction, 27(1), 1-24. https://doi.org/10.1080/07370000802584497 
  6. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245-274.  https://doi.org/10.1023/A:1022103903080
  7. Atabas, S., Schellinger, J., Whitacre, I., Findley, K., & Hensberry, K. (2020). A tale of two sets of norms: Comparing opportunities for student agency in mathematics lessons with and without interactive simulations. The Journal of Mathematical Behavior, 58, 100761. https://doi.org/10.1016/j.jmathb.2020.100761 
  8. Barlow, A. T., Edwards, C. M., Robichaux-Davis, R., & Sears, R. (2020). Enhancing and transforming virtual instruction. Mathematics Teacher: Learning and Teaching PK12, 113(12), 972-982. https://doi.org/10.5951/MTLT.2020.0283 
  9. Bishop, J. P. (2012). "She's always been the smart one. I've always been the dumb one": Identities in the mathematics classroom. Journal for Research in Mathematics Education, 43(1), 34-74. https://doi.org/10.5951/jresematheduc.43.1.0034 
  10. Boaler, J., & Greeno, J. G. (2000). Identity, agency and knowing in mathematics worlds. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 171-200). Greenwood Press. 
  11. Butler, J. (1988). Performative acts and gender constitution: An essay in phenomenology and feminist theory. Theatre Journal, 40(4), 519-531. https://doi.org/10.2307/3207893 
  12. Butler., J. (1997). The psychic life of power: Theories in subjection. Stanford University Press. 
  13. Chapin, S. H., & Anderson, N. C. (2013). Classroom discussions in math: A teacher's guide for using talk moves to support the common core and more. Math Solutions Publications. 
  14. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119-142. https://doi.org/10.3102/01623737025002119 
  15. Darragh, L. (2015). Recognizing 'good at mathematics': Using a performative lens for identity. Mathematics Education Research Journal, 27(1), 83-102. https://doi.org/10.1007/s13394-014-0120-0 
  16. Davies, B. & Harre, R. (1990). Positioning: The discursive production of selves. Journal for the Theory of Social Behavior, 20(1), 43-63. https://doi.org/10.1111/j.1468-5914.1990.tb00174.x 
  17. Dick, T. P., & Hollebrands, K. F. (2011). Focus in high school mathematics: Technology to support reasoning and sense making. National Council of Teachers of Mathematics. 
  18. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom'. Educational Studies in Mathematics, 75(2), 213-234. https://doi/org/10.1007/s10649-010-9254-5 
  19. Dunleavy, T.K. (2015). Delegating mathematical authority as a means to strive toward equity. Journal of Urban Mathematics Education, 8(1), 62-82. https://files.eric.ed.gov/fulltext/EJ1085766.pdf  1085766.pdf
  20. Esmonde, I. & Langer-Osuna, J. M. (2013). Power in numbers: Student participation in mathematical discussions in heterogeneous spaces. Journal for Research in Mathematics Education, 44(1), 288-315. https://doi.org/10.5951/jresematheduc.44.1.0288 
  21. Fletcher, S. & Fye, K. R. (2022). Identity and positioning during a technology-enhanced mathematics task: Who takes the stage? In Lischka, A., Dyer, E., Jones, R., Lovett, J., & Strayer, J. (Eds.), Proceedings of the forty-fourth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1929-1930). Middle Tennessee State University. 
  22. Gomez, K., Gomez, L. M., & Worsley, M. (2021). Interrogating the role of CSCL in diversity, equity, and inclusion. In Cress, U., Oshima, J., Rose, C. & Wise, A. (Eds.), International handbook of computer-supported collaborative learning (pp. 103-119). Springer. 
  23. Gonzalez, G., & Herbst, P.G. (2009). Students' conceptions of congruency through the use of dynamic geometry software. International Journal of Computers for Mathematical Learning, 14, 153-182. https://doi.org/10.1007/s10758-009-9152-z 
  24. Gutierrez, R. (2012). Context matters: How should we conceptualize equity in mathematics education? In B. Herbel-Eisenmann, J. Choppin, & D. Wagner (Eds.), Equity in discourse for mathematics education (pp. 17-33). Springer. https://doi.org/10.1007/978-94-007-2813-4_2 
  25. Harre, R., & Van Langenhove, L. (1991). Varieties of positioning. Journal for the Theory of Social Behaviour, 21(4), 393-407. https://doi.org/10.1111/j.1468-5914.1991.tb00203.x 
  26. Harrell-Levy, M. K., & Kerpelman, J. L. (2010) Identity process and transformative pedagogy: Teachers as agents of identity formation. Identity: An International Journal of Theory and Research, 10(2), 76-91. https://doi.org/10.1080/15283481003711684 
  27. Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978-1003. http://dx.doi.org/10.1002/tea.20363 
  28. Hollebrands, K. F. (2017). A framework to guide the development of a teaching mathematics with technology Massive Open Online Course for Educators (MOOCEd). In E. Galindo & J. Newton (Eds.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 80-89). Hoosier Association of Mathematics Teacher Educators. https://files.eric.ed.gov/fulltext/ED581399.pdf 
  29. Huang, W., & Sutherland, S.M. (2022). The impact of technology artifacts on mathematics classroom discourse. Digital Experiences in Mathematics Education, 8, 317-351 https://doi.org/10.1007/s40751-022-00114-1 
  30. Kim, J., & Yeo, S. (2019a). Reconceptualizing learning goals and teaching practices: Implementation of open-ended mathematical tasks. Research in Mathematical Education, 22(1), 35-46. https://doi.org/10.7468/jksmed.2019.22.1.35 
  31. Kim, J., & Yeo, S. (2019b). Teaching practices for all learners in the mathematics classroom. Research in Mathematical Education, 22(2), 123-134. https://doi.org/10.7468/ jksmed.2019.22.2.123 
  32. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press. 
  33. Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325-336. https://doi.org/10.1007/s11858-011-0329-2 
  34. McCulloch, A. W., Lovett, J. N., Dick, L. K., & Cayton, C. (2021). Positioning students to explore math with technology. Mathematics Teacher: Learning and Teaching PK-12, 114(10), 738-749. https://doi.org/10.5951/MTLT.2021.0059 
  35. NCTM (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics. 
  36. NCTM (2014). Principles to actions: ensuring mathematical success for all. National Council of Teachers of Mathematics. 
  37. Radovic, D., Black, L., Williams, J., & Salas, C. (2018). Towards conceptual coherence in the research on mathematics learner identity: A systematic review of the literature. Educational Studies in Mathematics, 99(1), 21-42. https://doi.org/10.1007/s10649-018-9819-2 
  38. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 16(4), 565-613. https://doi.org/10.1080/10508400701525253 
  39. Stake, R. E. (1995). The art of case study research. Sage Publications, Inc.
  40. Su, F. (2020). Mathematics for human flourishing. Yale University Press. 
  41. Tait-McCutcheon, S. L. & Loveridge, J. (2016). Examining equity of opportunities for learning mathematics through positioning theory. Mathematics Education Research Journal, 28(2), 327-348. https://doi.org/10.1007/s13394-016-0169-z 
  42. Turner, E., Dominguez, H., Maldonado, L., & Empson, S. (2013). English learners' participation in mathematical discussion: Shifting positionings and dynamic identities. Journal for Research in Mathematics Education, 44(1), 199-234. https://doi-org.ezproxy.mtsu.edu/10.5951/jresematheduc.44.1.0199 
  43. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students' command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281-307. https://doi.org/10.1007/s10758-004-3468-5 
  44. Wood, M. B. (2013). Mathematical micro-identities: Moment-to-moment positioning and learning in a fourth-grade classroom. Journal for Research in Mathematics Education, 44(5), 775-808. https://doi.org/10.5951/jresematheduc.44.5.0775 
  45. Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage.