DOI QR코드

DOI QR Code

Interpretation of Paleosedimentary Environment through Mineral Analysis of Sediments from the Summit of Magellan Seamount KC-7 in the Western Pacific

서태평양 마젤란 해산 KC-7 정상부 퇴적물의 광물 분석을 통한 고퇴적 환경 해석

  • Suhyun Kim (Department of Oceanography, Pusan National University) ;
  • Kiho Yang (Department of Oceanography, Pusan National University)
  • Received : 2024.06.14
  • Accepted : 2024.06.27
  • Published : 2024.06.30

Abstract

This study aimed to understand the mineral characteristics of the sediment from the summit of Magellan Seamount KC-7. In December 2023, approximately 20 years after the Korea Institute of Ocean Science and Technology conducted an initial field investigation of the sediment from the summit of seamount KC-7 in 2004, were obtained and subjected to mineralogical analysis to determine the essential sedimentary environmental characteristics of the seamount summit. For this purpose, smear slide analysis through a polarized microscope and X-ray diffraction analysis were conducted. The total length of the obtained sediments was 672.7 cm, and they were generally composed of calcareous ooze. In the lower part of the sediments (283.7-672.7 cm), Discoaster groups and coccoliths were predominantly observed. However, in the upper part above 283.7 cm, both coccoliths and foraminifera began to appear together, and in the uppermost sediments (0-151.7 cm), foraminifera became dominant, and the grain size of the sediments increased. This reflects a shift in the marine environment from high temperature and eutrophic conditions to low temperature and oligotrophic conditions as the seamount moved to its current position, aligning with the present oligotrophic environment of the western Pacific. The sediments comprised clay minerals, quartz, feldspar, and calcite. Examining the content changes of the four major mineral groups with depth, calcite was the most predominant, averaging 89.8 wt%. However, towards the upper layers, there was a trend of increasing clay content (up to 12.1 wt%) and decreasing calcite content (down to 85.1 wt%). This indicates that while the sedimentation mechanism remained unchanged, there has been a gradual influx of aeolian sediments.

본 연구에서는 마젤란 해산군 KC-7 정상부에서 획득된 퇴적물의 광물 특성을 파악하고자 하였다. 한국해양과학기술원에서 2004년에 해산 KC-7에 대한 정상부 퇴적물 현장 조사 이후 약 20년 만인 2023년 12월에 정상부 퇴적물을 획득하였고 광물학적 분석을 수행하여 해저산 정상부의 기초 퇴적 환경 특성을 파악하였다. 이를 위해 편광현미경을 통한 스미어 슬라이드 분석, X-선 회절 분석을 진행하였다. 획득된 퇴적물의 총 길이는 672.7 cm였으며, 전체적으로 방해석이 풍부한 탄산염질 연니로 구성되었고, 퇴적물 하부(283.7-672.7 cm)에서는 Discoaster 그룹과 석회비늘편모조류가 우세하게 나타났다. 그러나 283.7 cm 이상의 상부에서는 석회비늘편모조류와 유공충이 함께 나타나기 시작하였고, 퇴적물 최상부(0-151.7 cm)에서는 유공충이 우세해졌으며 퇴적물 입도 크기도 증가하였다. 이는 해산이 현재 위치까지 이동함에 따라 고온, 부영양 환경에서 저온, 빈영양 환경으로의 해양환경 변화를 반영하며, 현재 서태평양의 빈영양 환경과 일치한다. 퇴적물은 점토광물, 석영, 장석, 방해석으로 구성되었으며, 네 개의 주요 광물 그룹군에 대해 깊이에 따른 함량 변화를 살펴본 결과, 방해석이 평균 89.8 wt%로 가장 우세하였다. 그러나 퇴적물 상부로 갈수록 점토 함량이 증가(12.1 wt%)하고 방해석 함량은 감소(85.1 wt%)하는 경향성을 보였다. 이를 통해 퇴적 기작은 변하지 않았으나 점차 풍성기원의 퇴적물이 유입되고 있음을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2023-KS231697: 북서태평양 마젤란해산군 퇴적물의 광물학적, 생지화학적 분석을 통한 심층해류가 퇴적물에 미친 영향 복원). 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.RS-2023-00242081). 이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 램프(LAMP) 사업지원을 받아 수행된 연구임(No.RS-2023-00301938).

References

  1. Beaufort, L., Bolton, C.T., Sarr, A.-C., Sucheras-Marx, B., Rosenthal, Y., Donnadieu, Y., Barbarin, N., Bova, S., Cornuault, P., and Gally, Y., 2022, Cyclic evolution of phytoplankton forced by changes in tropical seasonality. Nature, 601, 79-84.
  2. Bukry, D., 1971, Discoaster evolutionary trends. Micropaleontology, 43-52.
  3. Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., and Ji, J., 2007, Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta, 71, 3904-3914.
  4. Glasby, G. P., Ren, X., Shi, X., and Pulyaeva, I. A., 2007, Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time. Geo-Marine Letters, 27, 315-323.
  5. Hyeong, K., Kim, J., Yoo, C.M., Moon, J.-W., and Seo, I., 2013, Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: Implications for deepwater circulation and phosphorus budgets. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 293-301.
  6. Jenkyns, H.C., and Wilson, P.A., 1999, Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots; relics from a greenhouse Earth. American Journal of Science, 299, 341-392.
  7. Kars, M., Musgrave, R.J., Kodama, K., Jonas, A.-S., Bordiga, M., Ruebsam, W., Mleneck-Vautravers, M.J., and Bauersachs, T., 2017, Impact of climate change on the magnetic mineral assemblage in marine sediments from Izu rear arc, NW Pacific Ocean, over the last 1 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology, 480, 53-69.
  8. Lai, W., Liu, X., Tian, J., Wang, H., Zhang, J., Huang, J., and Wan, S., 2023, Mineralogy of sediments in the Mariana Trench controlled by environmental conditions of the West Pacific since the Last Glacial Maximum. Journal of Asian Earth Sciences, 245, 105553.
  9. Ma, J., Song, J., Li, X., Wang, Q., Sun, X., Zhang, W., and Zhong, G., 2021, Seawater stratification vs. plankton for oligotrophic mechanism: a case study of M4 seamount area in the Western Pacific Ocean. Marine Environmental Research, 169, 105400.
  10. Marsaglia, K., Milliken, K., and Doran, L., 2013, IODP digital reference for smear slide analysis of marine mud, Part 1: Methodology and atlas of siliciclastic and volcanogenic components. Integrated Ocean Drilling Program Technical Note, 1,
  11. Marsaglia, K., Tentori, D., Milliken, K., Leckie, R.M., and Doran, L., 2014, IODP digital reference for smear slide analysis of marine mud part 2: methodolgy and atlas of biogenic components. Integrated Ocean Drilling Program Technical Note, 2.
  12. Marshall, K.C., 2013, Advances in microbial ecology. Springer Science & Business Media.
  13. Mel'nikov, M., Pletnev, S., Basov, I., Punina, T., Sedysheva, T., Khudik, V., and Zakharov, Y.D., 2007, New geological and paleontological data on Alba Guyot (Magellan Seamounts, Pacific Ocean). Russian Journal of Pacific Geology, 1, 257-264.
  14. Monteiro, F.M., Bach, L.T., Brownlee, C., Bown, P., Rickaby, R.E., Poulton, A.J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., and Gibbs, S., 2016, Why marine phytoplankton calcify. Science Advances, 2, e1501822.
  15. Morono, Y., Inagaki, F., Heuer, V., Kubo, Y., Maeda, L., Bowden, S., Cramm, M., Henkel, S., Hirose, T., and Homola, K., 2017, Expedition 370 methods. Proceedings of the International Ocean Discovery Program, 370.
  16. Reimers, C.E., and Wakefield, W.W., 1989, Flocculation of siliceous detritus on the sea floor of a deep Pacific seamount. Deep Sea Research Part A. Oceanographic Research Papers, 36, 1841-1861.
  17. Saavedra-Pellitero, M., Hernandez-Almeida, I., Cabarcos, E., Baumann, K.-H., Dunkley Jones, T., Sierro, F.J., and Flores, J.-A., 2022, Coupled Coccolith-Based Temperature and Productivity High-Resolution Reconstructions in the Eastern Equatorial Pacific During the Last Deglaciation and the Holocene. Frontiers in Marine Science, 9.
  18. Seo, I., Lee, Y.I., Yoo, C.M., Kim, H.J., and Hyeong, K., 2014, Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust. Journal of Geophysical Research: Atmospheres, 119, 11,492-411,504.
  19. Shin, J.Y., Kim, W., and Hyeong, K., 2020, High potency of volcanic contribution to the ~400 kyr sedimentary magnetic record in the Northwest Pacific. Frontiers in Earth Science, 8, 300.
  20. Siani, G., Colin, C., Michel, E., Carel, M., Richter, T., Kissel, C., and Dewilde, F., 2010, Late Glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: Paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 26-36.
  21. Smith, T.L., and Batiza, R., 1989, New field and laboratory evidence for the origin of hyaloclastite flows on seamount summits. Bulletin of Volcanology, 51, 96-114.
  22. Sugisaki, R., 1984, Relation between chemical composition and sedimentation rate of Pacific ocean-floor sediments deposited since the middle Cretaceous: basic evidence for chemical constraints on depositional environments of ancient sediments. The Journal of Geology, 92, 235-259.
  23. Toyoda, K., and Masuda, A., 1990, Sedimentary environments and chemical composition of Pacific pelagic sediments. Chemical Geology, 88, 127-141.
  24. Underwood, M., Lawler, N., and McNamara, K., 2020, Data report: standard mineral mixtures, normalization factors, and determination of error for quantitative X-ray diffraction analyses of bulk powders and clay-sized mineral assemblages. Proceedings of the International Ocean Discovery Program, 372.
  25. Wang, H., Saito, Y., Zhang, Y., Bi, N., Sun, X., and Yang, Z., 2011, Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Science Reviews, 108, 80-100.
  26. Wei, Y., Chen, Z., Guo, C., Zhong, Q., Wu, C., and Sun, J., 2020, Physiological and ecological responses of photosynthetic processes to oceanic properties and phytoplankton communities in the oligotrophic western Pacific Ocean. Frontiers in Microbiology, 11, 1774.
  27. Yang, K., and Jung, J., 2022, Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area. Ocean and Polar Research, 44(2), 139-145.
  28. Yi, L., 2023, Diverse glacial ventilation in deep Pacific: An integrated record from Mariana Trench and Magellan Seamounts over last 1.2 Myr. Global and Planetary Change, 230, 104279.
  29. You, G., Pan, J., Sun, W., and Liu, S., 2013, Geochemistry of Molybdenum Element in Co-rich Crusts from the Magellan Seamounts and Tracing of Paleoceanographic Environment. ISOPE Ocean Mining and Gas Hydrates Symposium, ISOPE-M-13-020.
  30. Yunev, O.A., Carstensen, J., Moncheva, S., Khaliulin, A., Ærtebjerg, G., and Nixon, S., 2007, Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuarine, Coastal and Shelf Science, 74, 63-76.