KYUNGPOOK Math. J. 64(2024), 499-504 https://doi.org/10.5666/KMJ.2024.64.3.499 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Distance-Regular Graphs with Valency k, Diameter $D \geq 3$ and at Most $Dk+1$ Vertices

Jongyook Park

Department of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea

e-mail: jongyook@knu.ac.kr

ABSTRACT. Let Γ be a distance-regular graph with valency k and diameter $D \geq 3$. It has been shown that for a fixed real number $\alpha > 2$, if Γ has at most αk vertices, then there are only finitely many such graphs, except for the cases where $(D = 3 \text{ and } \Gamma \text{ is imprimitive})$ and $(D = 4$ and Γ is antipodal and bipartite). And there is a classification for $\alpha \leq 3$. In this paper, we further study such distance-regular graphs for $\alpha > 3$.

Let $\beta \geq 3$ be an integer, and let Γ be a distance-regular graph with valency k, diameter $D \geq 3$ and at most $\beta k + 1$ vertices. Note that if $D \geq \beta + 1$, then Γ must have at least $\beta k + 2$ vertices. Thus, the assumption that Γ has at most $\beta k + 1$ vertices implies that $D \leq \beta$. We focus on the case where $D = \beta$ and provide a classification of distance-regular graphs having at most $Dk + 1$ vertices.

1. Introduction

Let Γ be a distance-regular graph with valency k and diameter $D \geq 3$. Koolen and Park [3] showed that except in both cases when $D = 3$ and Γ is imprimitive, and $D = 4$ and Γ is antipodal and bipartite, if the number of vertices of Γ is bounded above by a fixed constant times the valency, then there are only finitely many such graphs. The exact statement of the result is given below.

Theorem 1. ([3, Theorem 1]) Let $\alpha > 2$ be a real number. Then there are finitely many distance-regular graphs Γ with valency k, diameter $D \geq 3$ and v vertices satisfying $v \leq \alpha k$ unless one of the following holds:

- (i) $D = 3$ and Γ is imprimitive,
- (ii) $D = 4$ and Γ is antipodal and bipartite.

Key words and phrases: distance-regular graphs, diameter, bipartite, antipodal.

Received February 20, 2024; revised June 20, 2024; accepted July 15, 2024. 2020 Mathematics Subject Classification: 05E30.

500 Jongyook Park

As a continuation of this work, Park [6] considered the situation where, for a fixed vertex, the number of vertices at distance $D-1$ or D is at most twice the valency. In particular, if $D = 3$, then a distance-regular graph Γ has at most $3k + 1$ vertices, and hence it provides a classification of Theorem 1 for $\alpha \leq 3$ (see [6, Theorem 1]).

In this paper, we further study Theorem 1 for $\alpha > 3$. Here, we observe the following: For an integer $\beta \geq 3$, if $D \geq \beta + 1$, then a distance-regular graph with diameter D has at least $\beta k+2$ vertices (see [1, Proposition 5.1.1 (ii)]). So, if we assume that a distance-regular graph Γ has at most $\beta k + 1$ vertices, then the diameter D satisfies $D \leq \beta$. This also says that the diameter D in Theorem 1 is bounded above by [α]. We focus on the case where $D = \beta$ and provide a classification of distanceregular graphs having at most $Dk + 1$ vertices.

This paper is organized as follows: in the follwing section, we give some definitions and preliminaries. In Section 3, we study distance-regular graphs with valency k , diameter $D \geq 3$ and v vertices satisfying $v \leq Dk + 1$, and we provide a classification of such distance-regular graphs.

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [1] for more information. Let Γ be a connected graph with vertex set $V(\Gamma)$. The *distance* $d_{\Gamma}(x, y)$ between two vertices $x, y \in V(\Gamma)$ is the length of a shortest path between x and y in Γ. The diameter $D = D(\Gamma)$ of Γ is the maximum distance occuring in the graph Γ. For each $x \in V(\Gamma)$, let $\Gamma_i(x)$ be the set of vertices of Γ at distance *i* from x ($0 \le i \le D$). In addition, define Γ_{−1}(x) = \emptyset and Γ_{D+1}(x) = \emptyset . For the sake of simplicity, let $\Gamma(x) = \Gamma_1(x)$. In particular, Γ is regular with valency k if $k = |\Gamma(x)|$ holds for all $x \in V(\Gamma)$.

For a connected graph Γ with diameter D, take any two vertices x and y at distance $i = d_{\Gamma}(x, y)$, and consider the numbers $c_i(x, y) = |\Gamma_{i-1}(x) \cap \Gamma(y)|$, $a_i(x, y) =$ $|\Gamma_i(x) \cap \Gamma(y)|$ and $b_i(x, y) = |\Gamma_{i+1}(x) \cap \Gamma(y)|$ $(0 \le i \le D)$. We say that the *intersection* numbers c_i , a_i and b_i exist if the numbers $c_i(x, y)$, $a_i(x, y)$ and $b_i(x, y)$ respectively depend only on $i = d_{\Gamma}(x, y)$ and not on the choice of x and y with $d_{\Gamma}(x, y) = i$. Set $c_0 = b_D = 0$ and observe that $a_0 = 0$ and $c_1 = 1$. A connected graph Γ with diameter D is called a *distance-regular graph* if there exist intersection numbers c_i, a_i, b_i for all $i = 0, 1, \ldots, D$. Note that for a distance-regular graph Γ, the number $|\Gamma_i(x)|$ does not depend on the choice of $x \in V(x)$, and in this case the number $k_i = \frac{k b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i}$ $rac{c_0c_1\cdots c_{i-1}}{c_1c_2\cdots c_i}$ is equal to $|\Gamma_i(x)|$ for all $x \in V(x)$ and all $i = 0, 1, \ldots, D$.

For a connected graph Γ with diameter D, the distance-i graph Γ_i ($0 \leq i \leq D$) is the graph whose vertices are those of Γ and edges are the 2-subsets of vertices at mutual distance i in Γ. In particular, $\Gamma_1 = \Gamma$. An *antipodal* graph is a connected graph Γ with diameter $D > 1$ for which its distance- D graph Γ_D is a disjoint union of complete graphs. A graph Γ is called *bipartite* if it has no odd cycle. Note that if Γ is a bipartite distance-regular graph with diameter D, then $a_1 = a_2 = \cdots = a_D = 0$.

For a connected graph Γ with diameter D, the *adjacency matrix* $A = A(\Gamma)$ is the matrix whose rows and columns are indexed by the vertices of Γ and the (x, y) -entry is 1 whenever two vertices x and y are adjacent, and 0 otherwise. The *eigenvalues* of Γ are the eigenvalues of A.

3. Distance-Regular Graphs Having at Most $Dk + 1$ Vertices

In this section, we study distance-regular graphs with valency k, diameter $D \geq 3$ and v vertices satisfying $v \le Dk+1$, and we provide a classification of such distanceregular graphs. First, we show that the assumption $v \le Dk + 1$ implies that k_2 is small compared to the valency k or that the diameter D is small.

Lemma 2. Let Γ be a distance-regular graph with valency k, diameter $D \geq 3$ and v vertices satisfying $v \le Dk + 1$. Then $k_2 \le \frac{3}{2}k$ or $D \le 4$.

Proof: We assume that $k_2 > \frac{3}{2}k$. Then it is enough to prove that $D \leq 4$. Assume, on the contrary, that $D \geq 5$. Then, [1, Proposition 4.1.6 *(ii)*] says that $b_2 \geq c_3$, and this implies that $k_3 = k_2 \frac{b_2}{c_3} \ge k_2 > \frac{3}{2}k$, i.e., $k_2 + k_3 > 3k$. From [1, Proposition 5.1.1 (ii)], we know that $k_i \geq k$ for all $4 \leq i \leq D-1$. But then we have that $v = 1 + k + (k_2 + k_3) + (k_4 + \cdots + k_{D-1}) + k_D > 1 + k + 3k + (D-4)k + 1 = Dk + 2,$ where the inequality holds as $k_2 + k_3 > 3k$, $k_i \geq k$ for all $4 \leq i \leq D - 1$ and $k_D \geq 1$. This contradicts that $v \le Dk + 1$. Thus, the diameter D must be at most 4. This finishes the proof. \Box

From the above lemma, we find that the assumption $v \le Dk + 1$ implies that $k_2 \leq \frac{3}{2}k$ or $D \in \{3, 4\}$. The first case was addressed by Koolen and Park [4, Theorem 20], who classified distance-regular garphs with diameter $D \geq 3$ and $k_2 \leq \frac{3}{2}k$. The latter case is $D \in \{3, 4\}$, and the classification for $D = 3$ is given in [6, Theorem 1. So, we consider the case where $D = 4$ (under the assumption $k \geq 3$), and we prove that a ditance-regular graph with valency $k \geq 3$, diameter $D = 4$ and v vertices satisfying $v \le Dk + 1$ is a Hadamard graph.

Theorem 3. Let Γ be a distance-regular graph with valency $k \geq 3$, diameter $D = 4$ and v vertices satisfying $v \leq 4k + 1$. Then Γ is a Hadamard graph.

Proof: By [1, Proposition 5.1.1 *(ii)*], we know that $k_2 \geq k$, and this implies that $k_3 + k_4 \leq 2k$. Then [6, Theorem 2] implies that $k_D = k_4 = 1$ (as $k > 2$ and $D > 3$). Note that $k_4 = 1$ implies that $c_4 = k$, $a_4 = 0$, $b_3 = 1$ and $k_3 = k$.

We first consider the case where Γ is bipartite. Then $a_1 = a_2 = a_3 = 0$, and this implies that $b_1 = k - 1 = c_3$ and $c_2 = \frac{k}{2} = b_2$. Thus, the graph Γ has an intersection array $\{k, k-1, \frac{k}{2}, 1, 1, \frac{k}{2}, k-1, k\}$, and hence Γ is a Hadamard graph.

Now, we assume that Γ is not bipartite. By [2, Theorem 2], we know that the intersection number c_2 is at most $\frac{k}{3}$, i.e., $k_2 = \frac{kb_1}{c_2} \ge \frac{kb_1}{k/3} = 3b_1$. Since $k_2 \ge 3b_1$, we have that $4k+1 \ge v = 1+k+k_2+k_3+k_4 = 1+k+k_2+k+1 = 2+2k+k_2 \ge 2+2k+3b_1$, and hence $b_1 \leq \frac{2}{3}k - \frac{1}{3}$ and $a_1 = k - 1 - b_1 \geq \frac{k}{3} - \frac{2}{3}$. Note that the second largest eigenvalue θ_1 of Γ is at least $\frac{a_1 + \sqrt{a_1^2 + 4k}}{2} > a_1 + 1$ (see, for example, [5, Theorem 1.2]). 502 Jongyook Park

We consider the standard sequence $u_0(\theta_1), u_1(\theta_1), \ldots, u_4(\theta_1)$ of Γ corresponding to θ_1 . Since $a_1 \ge \frac{k}{3} - \frac{2}{3}$, we have that $\theta_1 > a_1 + 1 \ge \frac{k+1}{3}$. Thus, $u_1(\theta_1) = \frac{\theta_1}{k} > \frac{k+1}{3k}$. By [1, Theorem 4.1.4], we find an upper bound on the multiplicity m_1 of θ_1 as follows:

$$
m_1 = \frac{v}{\sum_{i=0}^4 [u_i(\theta_1)]^2 k_i} \le \frac{v}{[u_1(\theta_1)]^2 k} < \frac{4k+1}{[(k+1)/3k]^2 k} = \frac{36k^2 + 9k}{(k+1)^2} < 36.
$$

So, $m_1 \leq 35$. By [1, Theorem 5.3.2], we find an upper bound on the valency k as follows:

$$
k \le \frac{(m_1 - 1)(m_1 + 2)}{2} \le 629.
$$

Thus, $v \leq 4k + 1 = 2517$. All feasible intersection arrays of non-bipartite distanceregular graphs with diameter 4 having at most 4096 vertices are contained in [1, p.419–425]. We checked the feasible intersection arrays and found that there is no non-bipartite distance-regular graph with valency $k \geq 3$, diameter 4 and at most $4k + 1$ vertices. This finishes the proof. \Box

Remark 1. A Hadamard graph has an intersection array $\{k, k-1, \frac{k}{2}, 1; 1, \frac{k}{2}, k-1, k\}$ for some even integer $k \geq 2$. Its diameter is 4, and it has 4k vertices. If $k = 2$, then it is the 8-gon. If $k = 4$, then it is the 4-cube. If $k \geq 6$, then it satisfies that $k_2 > \frac{3}{2}k$.

Now, we are ready to give a classification of distance-regular graphs with valency k, diameter $D \geq 3$ and v vertices satisfying $v \leq Dk + 1$

Theorem 4. Let Γ be a distance-regular graph with valency k, diameter $D \geq 3$ and v vertices satisfying $v \le Dk + 1$. Then $k = 2$ or $D \le 4$. In particular, if $k \ge 3$, then $D \leq 4$ and one of the follwing holds:

- (i) $D = 3$ and Γ is bipartite,
- (*ii*) $D = 3$ and Γ *is a Taylor graph*,
- (iii) $D = 3$ and Γ is the Johnson graph $J(7,3)$,
- (iv) $D = 3$ and Γ is the halved 7-cube,
- (v) $D = 4$ and Γ is a Hadamard graph.

Proof: By Lemma 2, we know that $k_2 \leq \frac{3}{2}k$ or $D \leq 4$. If $k_2 \leq \frac{3}{2}k$, then by [4, Theorem 20, we also know that $k = 2$ or $D \le 4$. Thus, $k = 2$ or $D \le 4$ holds.

If $k = 2$, then the graph Γ is a polygon and it has either Dk or $Dk + 1$ vertices.

Now, we assume that $k \geq 3$ and $D \leq 4$. If $D = 3$, then the graph Γ has at most $3k + 1$ vertices. And then by [6, Theorem 1] we know that Γ is one of $(i) - (iv)$. So, we may assume that $D = 4$. Then by Theorem 3, we know that Γ is a Hadamard graph. This finishes the proof. \Box

Note that if we set $D = 3$ in Theorem 4, then we obtain the same result as [6, Theorem 1]. And we obtain the following result as an immediate consequence of Theorem 4.

Corollary 5. Let $\beta \geq 3$ be an integer. Let Γ be a distance-regular graph with valency k, diameter $D > 3$ and v vertices satisfying $v \leq \beta k + 1$. Then, one of the following holds:

- (i) $k = 2$ and Γ is a polygon,
- (*ii*) $D = 3$ and Γ *is bipartite,*
- (iii) $D = 3$ and Γ is a Taylor graph,
- (iv) $D = 3$ and Γ is the Johnson graph $J(7,3)$,
- (v) $D = 3$ and Γ is the halved 7-cube,
- (vi) $D = 4$ and Γ is a Hadamard graph.
- (vii) $3 \leq D < \beta$ and $Dk + 2 \leq v \leq \beta k + 1$.

Proof: Recall that $D \leq \beta$ holds, otherwise Γ has at least $\beta k + 2$ vertices.

If $D = \beta$, i.e., $v \le Dk + 1$, then by Theorem 4 one of $(i) - (vi)$ holds. So, we may assume that $D < \beta$.

If $v \le Dk + 1 \le \beta k + 1$, then again by Theorem 4 one of $(i) - (vi)$ holds.

Now, we assume that $v > Dk + 1$, i.e., $Dk + 2 \le v \le \beta k + 1$. In this case, we have (*vii*). This finishes the proof. \Box

- **Remark 2.** (1) In the case (vii), we do not give an upper bound on the valency k. However, from Theorem 1, we know that there are only finitely many such distance-regular graphs Γ except ($D=3$ and Γ is imprimitive) and ($D=4$ and Γ is antipodal and bipartite).
	- (2) [6, Theorem 1] already provides a classification for the case where $\beta = 3$ in Theorem 5. However, a classification for the case where $\beta = 4$ is not known yet. One can think about the case where $D = 3$ and $3k + 2 \le v \le 4k + 1$. Combined with Theorem 3, this will give a classification of distance-regular graphs having at most $4k + 1$ vertices.

Acknowledgments. The author would like to thank the referee for the valuable comments.

References

- [1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [2] J. H. Koolen and J. Park, A relationship between the diameter and the intersection number c_2 for a distance-regular graph, Des. Codes Cryptogr., $65(2012)$, 55–63.

504 Jongyook Park

- [3] J. H. Koolen and J. Park, A note on distance-regular graphs with a small number of vertices compared to the valency, European J. Combin., 34(2013), 935–940.
- [4] J. H. Koolen and J. Park, *Distance-regular graphs with* a_1 or c_2 at least half the valency, J. Combin. Theory Ser. A, 119(2012), 546–555.
- [5] J. Park, A relationship between the second largest eigenvalue and local valency of an edge-regular graph, Kyungpook Math. J., 61(2021), 671–677.
- [6] J. Park, The distance-regular graphs with valency $k \geq 2$, diameter $D \geq 3$ and $k_{D-1} + k_D \leq 2k$, Discrete Math., **340**(2017), 550–561.