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Abstract. Let Γ be a distance-regular graph with valency k and diameter D ≥ 3. It has

been shown that for a fixed real number α > 2, if Γ has at most αk vertices, then there are

only finitely many such graphs, except for the cases where (D = 3 and Γ is imprimitive)

and (D = 4 and Γ is antipodal and bipartite). And there is a classification for α ≤ 3. In

this paper, we further study such distance-regular graphs for α > 3.

Let β ≥ 3 be an integer, and let Γ be a distance-regular graph with valency k, diameter

D ≥ 3 and at most βk+1 vertices. Note that if D ≥ β+1, then Γ must have at least βk+2

vertices. Thus, the assumption that Γ has at most βk + 1 vertices implies that D ≤ β. We

focus on the case where D = β and provide a classification of distance-regular graphs having

at most Dk + 1 vertices.

1. Introduction

Let Γ be a distance-regular graph with valency k and diameter D ≥ 3. Koolen
and Park [3] showed that except in both cases when D = 3 and Γ is imprimitive, and
D = 4 and Γ is antipodal and bipartite, if the number of vertices of Γ is bounded
above by a fixed constant times the valency, then there are only finitely many such
graphs. The exact statement of the result is given below.

Theorem 1. ([3, Theorem 1]) Let α > 2 be a real number. Then there are finitely
many distance-regular graphs Γ with valency k, diameter D ≥ 3 and v vertices satis-
fying v ≤ αk unless one of the following holds:

(i) D = 3 and Γ is imprimitive,
(ii) D = 4 and Γ is antipodal and bipartite.
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As a continuation of this work, Park [6] considered the situation where, for a fixed
vertex, the number of vertices at distance D − 1 or D is at most twice the valency.
In particular, if D = 3, then a distance-regular graph Γ has at most 3k + 1 vertices,
and hence it provides a classification of Theorem 1 for α ≤ 3 (see [6, Theorem 1]).

In this paper, we further study Theorem 1 for α > 3. Here, we observe the
following: For an integer β ≥ 3, if D ≥ β + 1, then a distance-regular graph with
diameterD has at least βk+2 vertices (see [1, Proposition 5.1.1 (ii)]). So, if we assume
that a distance-regular graph Γ has at most βk + 1 vertices, then the diameter D
satisfies D ≤ β. This also says that the diameter D in Theorem 1 is bounded above
by ⌈α⌉. We focus on the case where D = β and provide a classification of distance-
regular graphs having at most Dk + 1 vertices.

This paper is organized as follows: in the follwing section, we give some definitions
and preliminaries. In Section 3, we study distance-regular graphs with valency k,
diameter D ≥ 3 and v vertices satisfying v ≤ Dk+ 1, and we provide a classification
of such distance-regular graphs.

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The
reader is referred to [1] for more information. Let Γ be a connected graph with
vertex set V (Γ). The distance dΓ(x, y) between two vertices x, y ∈ V (Γ) is the length
of a shortest path between x and y in Γ. The diameterD = D(Γ) of Γ is the maximum
distance occuring in the graph Γ. For each x ∈ V (Γ), let Γi(x) be the set of vertices of
Γ at distance i from x (0 ≤ i ≤ D). In addition, define Γ−1(x) = ∅ and ΓD+1(x) = ∅.
For the sake of simplicity, let Γ(x) = Γ1(x). In particular, Γ is regular with valency
k if k = |Γ(x)| holds for all x ∈ V (Γ).

For a connected graph Γ with diameter D, take any two vertices x and y at
distance i = dΓ(x, y), and consider the numbers ci(x, y) = |Γi−1(x)∩Γ(y)|, ai(x, y) =
|Γi(x)∩Γ(y)| and bi(x, y) = |Γi+1(x)∩Γ(y)| (0 ≤ i ≤ D). We say that the intersection
numbers ci, ai and bi exist if the numbers ci(x, y), ai(x, y) and bi(x, y) respectively
depend only on i = dΓ(x, y) and not on the choice of x and y with dΓ(x, y) = i. Set
c0 = bD = 0 and observe that a0 = 0 and c1 = 1. A connected graph Γ with diameter
D is called a distance-regular graph if there exist intersection numbers ci, ai, bi for all
i = 0, 1, . . . , D. Note that for a distance-regular graph Γ, the number |Γi(x)| does
not depend on the choice of x ∈ V (x), and in this case the number ki =

kb1···bi−1

c1c2···ci is

equal to |Γi(x)| for all x ∈ V (x) and all i = 0, 1, . . . , D.
For a connected graph Γ with diameter D, the distance-i graph Γi (0 ≤ i ≤ D)

is the graph whose vertices are those of Γ and edges are the 2-subsets of vertices at
mutual distance i in Γ. In particular, Γ1 = Γ. An antipodal graph is a connected
graph Γ with diameter D > 1 for which its distance-D graph ΓD is a disjoint union
of complete graphs. A graph Γ is called bipartite if it has no odd cycle. Note that if Γ
is a bipartite distance-regular graph with diameter D, then a1 = a2 = · · · = aD = 0.

For a connected graph Γ with diameter D, the adjacency matrix A = A(Γ) is the
matrix whose rows and columns are indexed by the vertices of Γ and the (x, y)-entry
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is 1 whenever two vertices x and y are adjacent, and 0 otherwise. The eigenvalues of
Γ are the eigenvalues of A.

3. Distance-Regular Graphs Having at Most Dk + 1 Vertices

In this section, we study distance-regular graphs with valency k, diameter D ≥ 3
and v vertices satisfying v ≤ Dk+1, and we provide a classification of such distance-
regular graphs. First, we show that the assumption v ≤ Dk + 1 implies that k2 is
small compared to the valency k or that the diameter D is small.

Lemma 2. Let Γ be a distance-regular graph with valency k, diameter D ≥ 3 and v
vertices satisfying v ≤ Dk + 1. Then k2 ≤ 3

2k or D ≤ 4.

Proof : We assume that k2 > 3
2k. Then it is enough to prove that D ≤ 4. Assume,

on the contrary, that D ≥ 5. Then, [1, Proposition 4.1.6 (ii)] says that b2 ≥ c3, and
this implies that k3 = k2

b2
c3

≥ k2 > 3
2k, i.e., k2 + k3 > 3k. From [1, Proposition

5.1.1 (ii)], we know that ki ≥ k for all 4 ≤ i ≤ D − 1. But then we have that
v = 1+ k+(k2 + k3)+ (k4 + · · ·+ kD−1)+ kD > 1+ k+3k+(D− 4)k+1 = Dk+2,
where the inequality holds as k2 + k3 > 3k, ki ≥ k for all 4 ≤ i ≤ D − 1 and kD ≥ 1.
This contradicts that v ≤ Dk + 1. Thus, the diameter D must be at most 4. This
finishes the proof. □

From the above lemma, we find that the assumption v ≤ Dk + 1 implies that
k2 ≤ 3

2k or D ∈ {3, 4}. The first case was addressed by Koolen and Park [4, Theorem

20], who classified distance-regular garphs with diameter D ≥ 3 and k2 ≤ 3
2k. The

latter case is D ∈ {3, 4}, and the classification for D = 3 is given in [6, Theorem
1]. So, we consider the case where D = 4 (under the assumption k ≥ 3), and we
prove that a ditance-regular graph with valency k ≥ 3, diameter D = 4 and v vertices
satisfying v ≤ Dk + 1 is a Hadamard graph.

Theorem 3. Let Γ be a distance-regular graph with valency k ≥ 3, diameter D = 4
and v vertices satisfying v ≤ 4k + 1. Then Γ is a Hadamard graph.

Proof : By [1, Proposition 5.1.1 (ii)], we know that k2 ≥ k, and this implies that
k3 + k4 ≤ 2k. Then [6, Theorem 2] implies that kD = k4 = 1 (as k > 2 and D > 3).
Note that k4 = 1 implies that c4 = k, a4 = 0, b3 = 1 and k3 = k.

We first consider the case where Γ is bipartite. Then a1 = a2 = a3 = 0, and this
implies that b1 = k − 1 = c3 and c2 = k

2 = b2. Thus, the graph Γ has an intersection

array {k, k − 1, k
2 , 1; 1,

k
2 , k − 1, k}, and hence Γ is a Hadamard graph.

Now, we assume that Γ is not bipartite. By [2, Theorem 2], we know that the
intersection number c2 is at most k

3 , i.e., k2 = kb1
c2

≥ kb1
k/3 = 3b1. Since k2 ≥ 3b1, we

have that 4k+1 ≥ v = 1+k+k2+k3+k4 = 1+k+k2+k+1 = 2+2k+k2 ≥ 2+2k+3b1,
and hence b1 ≤ 2

3k − 1
3 and a1 = k − 1 − b1 ≥ k

3 − 2
3 . Note that the second largest

eigenvalue θ1 of Γ is at least
a1+

√
a2
1+4k

2 > a1+1 (see, for example, [5, Theorem 1.2]).
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We consider the standard sequence u0(θ1), u1(θ1), . . . , u4(θ1) of Γ corresponding to
θ1. Since a1 ≥ k

3 −
2
3 , we have that θ1 > a1 +1 ≥ k+1

3 . Thus, u1(θ1) =
θ1
k > k+1

3k . By
[1, Theorem 4.1.4], we find an upper bound on the multiplicity m1 of θ1 as follows:

m1 =
v

4∑
i=0

[ui(θ1)]
2ki

≤ v

[u1(θ1)]2k
<

4k + 1

[(k + 1)/3k]2k
=

36k2 + 9k

(k + 1)2
< 36.

So, m1 ≤ 35. By [1, Theorem 5.3.2], we find an upper bound on the valency k as
follows:

k ≤ (m1 − 1)(m1 + 2)

2
≤ 629.

Thus, v ≤ 4k + 1 = 2517. All feasible intersection arrays of non-bipartite distance-
regular graphs with diameter 4 having at most 4096 vertices are contained in [1,
p.419–425]. We checked the feasible intersection arrays and found that there is no
non-bipartite distance-regular graph with valency k ≥ 3, diameter 4 and at most
4k + 1 vertices. This finishes the proof. □

Remark 1. A Hadamard graph has an intersection array {k, k−1, k
2 , 1; 1,

k
2 , k−1, k}

for some even integer k ≥ 2. Its diameter is 4, and it has 4k vertices. If k = 2, then
it is the 8-gon. If k = 4, then it is the 4-cube. If k ≥ 6, then it satisfies that k2 > 3

2k.

Now, we are ready to give a classification of distance-regular graphs with valency
k, diameter D ≥ 3 and v vertices satisfying v ≤ Dk + 1

Theorem 4. Let Γ be a distance-regular graph with valency k, diameter D ≥ 3 and
v vertices satisfying v ≤ Dk + 1. Then k = 2 or D ≤ 4. In particular, if k ≥ 3, then
D ≤ 4 and one of the follwing holds:

(i) D = 3 and Γ is bipartite,
(ii) D = 3 and Γ is a Taylor graph,
(iii) D = 3 and Γ is the Johnson graph J(7, 3),
(iv) D = 3 and Γ is the halved 7-cube,
(v) D = 4 and Γ is a Hadamard graph.

Proof : By Lemma 2, we know that k2 ≤ 3
2k or D ≤ 4. If k2 ≤ 3

2k, then by [4,
Theorem 20], we also know that k = 2 or D ≤ 4. Thus, k = 2 or D ≤ 4 holds.

If k = 2, then the graph Γ is a polygon and it has either Dk or Dk + 1 vertices.
Now, we assume that k ≥ 3 and D ≤ 4. If D = 3, then the graph Γ has at most

3k + 1 vertices. And then by [6, Theorem 1] we know that Γ is one of (i)− (iv). So,
we may assume that D = 4. Then by Theorem 3, we know that Γ is a Hadamard
graph. This finishes the proof. □
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Note that if we set D = 3 in Theorem 4, then we obtain the same result as [6,
Theorem 1]. And we obtain the following result as an immediate consequence of
Theorem 4.

Corollary 5. Let β ≥ 3 be an integer. Let Γ be a distance-regular graph with valency
k, diameter D ≥ 3 and v vertices satisfying v ≤ βk + 1. Then, one of the following
holds:

(i) k = 2 and Γ is a polygon,
(ii) D = 3 and Γ is bipartite,
(iii) D = 3 and Γ is a Taylor graph,
(iv) D = 3 and Γ is the Johnson graph J(7, 3),
(v) D = 3 and Γ is the halved 7-cube,
(vi) D = 4 and Γ is a Hadamard graph.
(vii) 3 ≤ D < β and Dk + 2 ≤ v ≤ βk + 1.

Proof :Recall that D ≤ β holds, otherwise Γ has at least βk + 2 vertices.
If D = β, i.e., v ≤ Dk+ 1, then by Theorem 4 one of (i)− (vi) holds. So, we may

assume that D < β.
If v ≤ Dk + 1(< βk + 1), then again by Theorem 4 one of (i)− (vi) holds.
Now, we assume that v > Dk+1, i.e., Dk+2 ≤ v ≤ βk+1. In this case, we have

(vii). This finishes the proof. □

Remark 2. (1) In the case (vii), we do not give an upper bound on the valency
k. However, from Theorem 1, we know that there are only finitely many such
distance-regular graphs Γ except (D = 3 and Γ is imprimitive) and (D = 4
and Γ is antipodal and bipartite).

(2) [6, Theorem 1] already provides a classification for the case where β = 3 in
Theorem 5. However, a classification for the case where β = 4 is not known
yet. One can think about the case where D = 3 and 3k + 2 ≤ v ≤ 4k + 1.
Combined with Theorem 3, this will give a classification of distance-regular
graphs having at most 4k + 1 vertices.
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