DOI QR코드

DOI QR Code

Gegenbauer Polynomials For a New Subclass of Bi-univalent Functions

  • Received : 2023.12.02
  • Accepted : 2024.06.12
  • Published : 2024.09.30

Abstract

In this study, we introduce and investigate a novel subclass of analytic bi-univalent functions, which we define using Gegenbauer polynomials. We derive the initial coefficient bounds for |a2|, |a3|, and |a4|, and establish Fekete-Szegö inequalities for this class. In addition, we confirm that Brannan and Clunie's conjecture, ${\mid}a_2{\mid}\,{\leq}\,{\sqrt{2}}$, is valid for this subclass. To facilitate better understanding, we provide visualizations of the functions, using appropriately chosen parameters.

Keywords

References

  1. A. Amourah, A. Alamoush and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math., 10(2)(2021), 625-632. https://doi.org/10.3390/math10142462
  2. D. A. Brannan and J. Clunie, Aspects of contemporary complex analysis, Academic Press, Inc., 1980.
  3. N. N. Lebedev, Special functions and their applications, Prentice-Hall, Inc., 1965, xii+308 pp.
  4. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1)(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
  5. M. Reimer, Multivariate polynomial approximation, Birkhauser, 2003.
  6. Q. H. Xu, Y. C. Gui and H, M, Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(6)(2012), 990-994. https://doi.org/10.1016/j.aml.2011.11.013
  7. S. Yal,cin, K. Muthunagai and G. Saravanan, A subclass with bi-univalence involving (p,q)- Lucas polynomials and its coefficient bounds, Bol. Soc. Mat. Mex. 26(3)(2020), 1015-1022. https://doi.org/10.1007/s40590-020-00294-z