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Abstract. Severe Acute Respiratory Syndrome (SARS) is a highly contagious viral disease

with high mortality rate. There is no vaccine against SARS, but the spread can be limited

by masking or social distancing. In this paper we implement a game-theoretic model

of voluntary precautions against SARS. We build on the compartmental ODE model of

the 2003 SARS epidemic. We assume that susceptible individuals can mask and/or limit

contacts with others in order to decrease their chances of contracting SARS. Since the risk

of SARS infection depends on the actions of others, this creates a public goods game. We

find the Nash equilibrium, the solution of the game, which is the optimal voluntary level of

precautions the individuals should take. We also study the effects of such actions on the

spread of SARS and show that the effect significantly depends on the individual cost of

the precautions. As soon as the cost rises above a critical threshold, the individuals will

have no incentive to use any kind of voluntary precaution.

1. Introduction

Severe Acute Respiratory Syndrome (SARS) is a highly contagious airborne and
nosocomial disease caused by the coronavirus SARS-CoV [50]. SARS was a major
source of concern when it first emerged in 2003 [15]. Overall, SARS accounted for
over 770 deaths and 8000 infections globally [44]. SARS has a variety of symptoms
that are similar to those of influenza, including headaches, body aches, rash, and
fever [39]. SARS has a high mortality (about 15%) especially among the elderly
(about 50%) [39]. There is no current treatment or vaccine for SARS, but there are
human vaccines in development and a successful animal vaccine has been tested
[34, 43]. Although the last reported case of SARS was in 2004, the threat of its
possible return cannot be understated, especially given the recent emergence of
SARS-CoV2.

Mathematical models are now a common tool used to understand and control
the spread of infectious diseases [2, 57]. There are many models for SARS control,
including [28, 27, 18, 42, 53, 45, 60, 31, 63, 46] and there are thousands of models
for COVID-19 [38].

In their seminal paper [7], the authors incorporated game theory into epidemics
modeling. With the addition of voluntary disease prevention, the game-theoretic
models study scenarios in which self-interested individuals take actions based on
the decisions of the rest of the population. In extensive reviews [61], [59] and [16],
it is argued that incorporating human behavior provides more insight and better
predictions than through the standard compartmental models.



Game-Theoretic Model of SARS Precautions 373

There are many ways in which the human behavior can be incorporated into the
underlying epidemiological models [61]. They include population level mean-field
games where the population is assumed homogeneous and the human decisions are
based on (i) the perceived risks of contracting the disease; (ii) the actual spread of
the disease; (iii) the perceived risks of vaccine-related side effects. For example, [22]
considered the effects of information-dependent vaccine uptake in a standard SIR
compartmental model. On the other hand, [6] used imitation dynamics to create a
behavior-explicit model of vaccinating behavior while [8] created the behavior-explicit
game-theoretic models of vaccinating behavior. In this manuscript we follow the
the theoretical framework started in [8] and expanded in [7]. However, we note that
there are many other models of vaccination in structured and networked populations,
such as [24].

To our knowledge, no game-theoretic model of SARS transmission exists in the
literature. Thus, the main objective of this paper is to fill this gap and implement
a game-theoretic model of voluntary precautions against SARS. We follow the
compartmental model of [28] and assume that susceptible individuals can wear
masks and/or limit contacts with others in order to decrease their chances of
contracting SARS. We study the effects of such actions on the spread of SARS.

Our approach is similar to [62] who considered strategic choices during disease
outbreak and applied their work to SARS. They considered an infinite population
divided into “local population” and “potential travelers”. Each of the two subpop-
ulations were further divided into the usual susceptible, infected, and recovered
compartments. The potential travelers played a game in which they had to decide
whether to travel or not. By analyzing the resulting system of ordinary differential
equations, the authors were able to assign payoffs to the players. They solved the
game for Nash equilibria and they found that the optimal strategy for an individual
can sometimes coincide with the optimal strategy for the group. However, when the
optimal strategies differ, the difference is very large and highly sensitive to changes
in parameter values. The authors concluded that centrally imposed, rather than
voluntary, travel restrictions are needed to prevent SARS outbreaks. Also, [29] and
[30] investigated a vaccination game in an explicitly finite population. They applied
their model to HIV/AIDS. In their game, the individuals engaged in safe or risky
behavior and, if infected, they could buy treatment (if the treatment was available;
the game also included a drug company as additional player). The players received
an idealized payoff based on their choices. The authors constructed an extensive
game which they solved by backward induction for optimal strategies.

Similarly to [29], we consider a game in which individuals can engage in safe
(wear a mask and/or socially distance) or risky (do not wear a mask and do not
socially distance) behavior. Unlike [62], where only part of the population played
the game, in our model, every person is a player. Unlike [29], we do not consider
other players (such as mask producers) and we evaluate the payoffs to the players
based on the underlying epidemiological model of SARS transmission, similarly to
what was done in [62].
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2. Model

2.1. Compartmental ODE model

We follow the model from [28] which is an extension of the classical SIR model
[20, 57, 13]. The population is divided into six classes or compartments:

(1) Susceptible (S); individuals without the SARS pathogen,
(2) Exposed asymptomatic (E); asymptomatic individuals who have been

exposed to the virus, but have not yet developed clinical symptoms of
SARS,

(3) Infectious symptomatic (I); individuals who developed symptoms and are
not in isolation,

(4) Quarantined asymptomatic (Q); those are asymptomatic exposed individuals
who are quarantined because of established epidemiological contact with a
source of virus,

(5) Isolated symptomatic (J); individuals who developed clinical symptoms and
are isolated (for example by hospitalization or staying at home),

(6) Recovered (R); individuals who were infected in the past and possess lasting
immunity against SARS.

The symbols S,E, I,Q, J,R will be used not only to denote the compartments, but
also the number of individuals in the compartments. The total population size will
be denoted by N = S + E + I +Q+ J +R.

The individuals enter the population as susceptible at rate Π. This parameter
represents a net inflow into the region at per unit time, including new births,
immigration and emigration. Individuals in any class can die of natural and SARS
unrelated causes at rate µ. As in [28], we ignore the net inflow of individuals in any
other class.

Susceptible individuals become exposed when they come in contact with infectious
symptomatic, exposed asymptomatic, quarantined asymptomatic, or isolated symp-
tomatic individuals. Without any precautions, the transmission rates are β, εEβ,
εQβ , εJβ, respectively; here β is the transmission coefficient which includes both
the contact rate and the transmission probability and εX is a modification factor
for the class X ∈ {E, J,Q}. However, the individuals may take some precautions
such as wearing masks, social distancing, or avoiding gatherings. We denote such
precaution efforts by epop and, similarly as in [21, 17, 14, 54] we assume that the
transmission rate is reduced by the factor (1− epop). The total force of infection is
thus given by

(1) λ = (1− epop)β

(
I

N
+ εE

E

N
+ εQ

Q

N
+ εJ

J

N

)
.

The exposed asymptomatic individuals develop symptoms at rate κ1. They can
also enter quarantine at rate γ1. As discussed in [28], in reality some susceptible
individuals will likely enter quarantine, but for the purpose of our model we neglect
this possibility and assume that all quarantined individuals were truly exposed and,
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in time κ−1
2 , develop symptoms and become isolated symptomatic. This assumption

means that our model slightly overestimates the number of susceptible individuals.
The infectious symptomatic individuals may recover at rate σ1, enter isolation at

rate γ2, or die of SARS related causes at rate d1. The isolated individuals recover at
rate σ2 but can also die of SARS related causes at rate d2. We assume d1 > d2 and
σ2 > σ1 because isolated individuals are more likely to receive treatment [12, 42].

S E I R

Q J

λΠ κ1

γ1

µ

σ1

µ

κ2

γ2 σ2

µ

µ

d2

d1 µ

µ

Figure 1. Scheme of the compartmental ODE model for
SARS transmission. The compartments represent Suscep-
tible (S), Exposed and asymptomatic (E), Infectious and
symptomatic (I), Quarantined asymptomatic (Q), Isolated
symptomatic (J), and Recovered (R). Solid arrows represent
the transitions between compartments. The letters next to
the arrows specify the per capita rates of the transitions. The
force of infection λ is given by (1). The parameters are ex-
plained in Table 1.

The dynamics are summarized in Figure 1. The notation is summarized in Table
1. The parameter values are adopted from [28], specifically the Hong Kong outbreak
[42].
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Table 1. Model parameters. The rates are per capita per
day. The values were all adopted from [28]. Ranges were
estimated from the values.

Symbol Meaning Value Range

Π Net inflow of susceptible individuals 221 [100, 300]
β Transmission rate 0.15 [0.1, 0.25]
µ Natural death rate 1

80∗365
[

1
90∗365 ,

1
70∗365

]
κ1 Rate at which not quarantined exposed individ-

uals develop symptoms
0.1 [0.05, 0.15]

κ2 Rate at which quarantined exposed individuals
develop symptoms

0.125 [0.1, 0.15]

γ1 Rate of quarantining of people who have been in
contact with an infected individual

0 [0, 0.15]

γ2 Rate at which symptomatic individuals seek med-
ical attention and are put into isolation

0 [0, 0.75]

σ1 Recovery rate of infectious individuals 0.0337
[
1
40 ,

1
20

]
σ2 Recovery rate of isolated individuals 0.0386

[
1
40 ,

1
20

]
d1 SARS-induced death rate of I 0.0079 [0.001, 0.02]
d2 SARS-induced death rate of J 0.0068 [0.001, 0.02]
εE Transmission coefficient for E 0 [0, 0.18]
εQ Transmission coefficient for Q 0 [0, 0.18]
εJ Transmission coefficient for J 0 [0, 0.84]
epop Precaution level in the population variable
C Cost of precautions (relative to the cost of SARS) variable

The model yields the following system of differential equations.

dS

dt
= Π− µS − (1− epop)

(
βI + βεEE + βεQQ+ βεJJ

N

)
S(2)

dE

dt
= (1− epop)

(
βI + βεEE + βεQQ+ βεJJ

N

)
S − (µ+ γ1 + κ1)E(3)

dQ

dt
= γ1E − (µ+ κ2)Q(4)

dI

dt
= κ1E − (µ+ γ2 + d1 + σ1)I(5)

dJ

dt
= κ2Q+ γ2I − (µ+ d2 + σ2)J(6)

dR

dt
= σ1I + σ2J − µR(7)

Above, we assume that epop is constant in time.
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2.2. Equilibria of the dynamics

The disease-free equilibrium (DFE) the system (2) – (7) is given by

(8) (S0, E0, Q0, I0, J0, R0) =

(
Π

µ
, 0, 0, 0, 0, 0

)
.

The effective reproduction number, R, is derived in A.1 and is given by

(9) R = (1− epop)R0

where

(10) R0 =
β

DE

(
εE + εQ

γ1
DQ

+
κ1

DI
+ εJ

γ1κ2

DJDQ
+ εJ

γ2κ1

DIDJ

)

is the basic reproduction number (in a population without any precautionary efforts)
and

DE = µ+ κ1 + γ1,(11)

DI = µ+ σ1 + d1 + γ2,(12)

DJ = µ+ σ2 + d2,(13)

DQ = µ+ κ2.(14)

In the endemic equilibrium (EE), as derived in A.2, the force of the infection can be
expressed as

(15) λ∗ =
(R− 1)DEDIDJDQ

T

where

T = DIDJDQ + κ1DJDQ + γ1DIDJ + κ2γ1DI + κ1γ2DQ +
σ1κ1

µ
DJDQ

+
σ2κ2γ1

µ
DI +

σ2κ1γ2
µ

DQ.(16)

The endemic equilibrium is then given by
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S∗ =
Π

µ+ λ∗ ,(17)

E∗ = λ∗ S∗

DE
,(18)

Q∗ = λ∗ S∗γ1
DEDQ

,(19)

I∗ = λ∗ S∗κ1

DEDI
,(20)

J∗ = λ∗ S∗

DE

(
κ2γ1
DJDQ

+
κ1γ2
DIDJ

)
,(21)

R∗ = λ∗ S∗

DE

(
σ1κ1

µDI
+

σ2κ2γ1
µDJDQ

+
σ2κ1γ2
µDIDJ

)
.(22)

While we do not focus on stability of the equilibria, it follows directly from [58]
that the DFE is locally asymptotically stable if R < 1. Also, by (15), the EE exists
only if R > 1. Based on the numerical simulations, we believe that DFE is globally
asymptotically stable if R ≤ 1 and EE is globally asymptotically stable if R > 1.

2.3. Game-theoretic framework

We incorporate the game-theoretic component into the above transmission dy-
namics as done in [7].

A game is played by susceptible individuals who decide how many precautions they
should take. All individuals are assumed to be rational, have complete information
about the SARS epidemic, and act in their own interest. They evaluate costs and
benefits of their own action and the actions of others. They choose the action that
maximizes their own net payoffs (benefits minus costs).

We focus on a single individual using a strategy e when the rest of the population
uses a strategy epop. If the population is large enough, the decision of a single
individual will not have a significant impact on the steady state of the dynamics.
Thus, the force of infection will be either 0 if R < 1 and the population is in the
disease-free equilibrium, or it is given by (1) if R > 1.

The focal individual uses e instead of epop and thus their rate of becoming infected
is λ = 1−e

1−epop
λ∗. Hence, the probability of a susceptible individual becoming exposed

is given by

(23) πS→E =


1−e

1−epop
λ∗

1−e
1−epop

λ∗ + µ
=

(1− e)λ∗

(1− e)λ∗ + (1− epop)µ
, if R > 1,

0, if R ≤ 1.

There is a cost associated with social distancing [51]. Let C be the cost of complete
prevention (e = 1) relative to the cost of getting infected by SARS. Let us assume
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that the cost of the precautionary efforts is linear in e. The payoff to an individual
using e in a population where everyone else uses epop is given by

(24) P (e, epop) = −Ce− πS→E .

This equation was developed in [7] and specifies that an individual using strategy e
has to pay a cost Ce, and even with this level of precaution, the individual can still
contract the disease (and pay a unit cost 1) with probability πS→E . The expected
payoff (expressed in the units of the disease cost) is given by (24).

In accordance with the static vaccination game model in [7], it is assumed that
all individuals make their choices once, simultaneously, and based on the payoffs in
the equilibrium of the dynamics (2)–(7). This is a standard assumption successfully
used in many scenarios, including models of influenza epidemics [25, 52]. As a result,
epop can be treated as a constant. There are ways to consider a more dynamical
approach and explicitly model the time evolution of the protective strategies; see for
example [6, 41, 9, 19, 10, 49, 5, 1].

3. Analysis

The focal individual tries to maximize P (e, epop) given in (24). If the basic
reproduction number, R0, given by (10), is such that R0 < 1, then the population
will reach disease free equilibrium even if nobody uses any precautions. Hence, e = 0
is the Nash equilibrium of the game.

However, for SARS, R0 > 1. Let us denote

(25) eHI = 1− 1

R0
,

the minimal precautionary efforts needed to achieve R ≤ 1. If epop > eHI , then
R < 1 and the optimal action for the focal individual is e = 0.

Hence, we will assume epop < eHI . We have

∂

∂e
P (e, epop) = −C +

∂

∂e
πS→E = −C + λ∗ (1− epop)µ(

(1− e)λ∗ + (1− epopµ)
)2(26)

∂2

∂e2
P (e, epop) = 2(λ∗)2

(1− epop)µ(
(1− e)λ∗ + (1− epopµ)

)3 > 0.(27)

Consequently, the function P (e, epop) has a maximum either at e = 0 or e = 1 and
the Nash equilibrium is a solution of

(28) P (0, epop) = P (1, epop),

i.e., the solution of

(29)
λ∗

λ∗ + (1− epop)µ
= C.
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As derived in A.3, the Nash equilibrium is given by

(30) eNE =

1−
(1− C)

DEDIDJDQ

T

R0(1− C)
DEDIDJDQ

T − µC
, if C < Ccrit,

0, otherwise.

where

(31) Ccrit =


(R0 − 1)

DEDIDJDQ

T

(R0 − 1)
DEDIDJDQ

T + µ
, if R0 > 1,

0, otherwise.

4. Results

For any parameter values, the Nash equilibrium eNE , i.e., the optimal precau-
tionary level is given by (30). The dependence of eNE on C is illustrated in Figure
2(a). When C = 0, eNE = eHI . As C increases, eNE decreases. When C reaches
the critical value Ccrit, eNE = 0.

Similarly, we can investigate the value of the reproduction number at the popula-
tion that uses the Nash equilibrium level of precautions. This is shown in Figure
2(b). When C ≈ 0, R ≈ 1 but still larger than 1. As C increases, R increases and
reaches R0 when C ≥ Ccrit.

We performed uncertainty and sensitivity analysis using the Latin hyper-cube
sampling with partial rank correlation coefficient (LHS-PRCC) scheme [11, 55, 47, 37];
see also A.4.

Figure 3(a) shows the results of uncertainty analysis, i.e., the distribution of eNE

among all the sampled parameter values. The most frequent values of eNE are
between 0.5 and 0.7 and the average value is approximately 0.47.

Figure 3(b) shows the sensitivity of eNE on various parameters. There is a strong
negative correlation between the optimal voluntary precaution level eNE and the
cost of the precautions, C. As seen above in Figure 2, increasing C decreases eNE .
Increasing recovery rate, σ2, or isolation rate, γ2, also causes eNE to decline. On the
other hand, increasing the transmission rate, β, or the transmission coefficient from
isolated individuals, εJ , causes eNE to increase. The influence of other parameters
on eNE is relatively small.

Figure 3(c) shows the results of uncertainty analysis and the distribution of Ccrit.
The most frequent values of Ccrit are between 0.5 and 0.8; the average value is
approximately 0.54. Figure 3(d) shows the sensitivity of Ccrit on various parameters.
The sensitivity indices are very similar to the sensitivity of eNE .

5. Discussion and Limitations

Our model has limitations connected to the assumption of infinite homogeneous
population. While this assumption is common in epidemiological modeling, other
approaches are possible.
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(a) (b)

Figure 2. (a) Values of the optimal individual precautionary
levels eNE as a function of the relative cost of the precautions
C. (b) Values of the effective reproduction number R when
the population uses eNE . Parameter values are as specified
in Table 1; the rate at which non-quarantined cases develop
symptoms varies from κ1 = 0.05 (blue dotted), κ1 = 0.075
(blue dashed), κ1 = 0.1 (black solid), κ1 = 0.125 (red dashed),
κ1 = 0.15 (red dotted).

For example, the use of simulations, such as in [33, 35, 36, 40, 4, 3, 32], could
allow for flexibility and realism in the modeling approach, taking into account both
geographical and social heterogeneity of an explicitly finite population.

In our game-theoretic setup, we assumed that the cost is linear. As demonstrated
in [54], the assumption is not necessary. If the cost is assumed to be an increasing
and concave down function, then the analysis and results would be qualitatively
similar. It is unclear how much the result would change if no assumptions about the
second derivative were made.

Finally, to evaluate the payoffs of the game, we assumed that the underlying
transmission dynamics reached an equilibrium. This assumption can be relaxed by
considering adaptive dynamics as done in [6]. This dynamical approach can yield
more complex outcomes. For example, temporal oscillations in the use of protective
strategies can emerge; this was demonstrated for example on the use of insecticide
treated nets in the prevention of visceral leishmaniasis [23] and malaria [41].

6. Conclusions

In this paper, we adapted the compartmental model of SARS transmission
developed by [28]. We added the game-theoretic component incorporating voluntary
precautions such as masking or limiting contacts with others. The model shows
that the optimal level of precautions significantly depends on the individual costs
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(a) (b)

(c) (d)

Figure 3. Uncertainty and sensitivity analysis. (a) Uncer-
tainty of eNE , the average is around 0.36, (b) sensitivity of
eNE , (c) uncertainty of Ccrit, the average is about 0.4, and
(d) sensitivity of Ccrit . The parameter ranges are as in Table
1. Only parameters with sensitivity over 0.05 are shown in
figures (b) and (d).

of such actions relative to the cost of SARS. The more costly those actions are (in
true or perceived costs), the lower the level of precautions the individuals will adopt.
As soon as the costs rise above a relatively low threshold, the individuals will not
voluntarily use any precautions. Since the cost is expressed relative to the cost of
SARS, a decrease of the actual or perceived SARS infection has the same effect as
the increase of the cost of precautions.

This finding is in agreement with what we see happening for COVID-19. When
COVID-19 first appeared and was considered very serious, people isolated and
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masked as much as possible. However, as the perceived negative effects of COVID-19
continued to decline, the recommended levels of precautions were also dropping.

Another result of our model is that voluntary precautions alone are not enough to
reduce the reproduction number to a values less than 1, i.e., voluntary precautions
alone cannot eliminate SARS nor mitigate the risks of outbreaks. That is in
agreement with the general game considered in [26] as well as models for specific
diseases, e.g., yellow fever [14]. In these cases, the cost of prevention is high relative
to the cost of the disease. However, and this is seen from our model as well, when
the relative cost is quite low, voluntary precautions may lower the reproduction
number close enough to 1 so that the disease incidence or prevalence is no longer a
public health concern. This phenomenon was already observed in models of many
vector-borne diseases, including dengue [21], and lymphatic filariasis [54].
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Appendix A. Calculations

A.1. Reproduction number

The reproduction number is derived using the next-generation matrix method
[58]. We order the compartments with the infections as E, I, Q and J . The new
infections only appear in E, and thus

(32) F =


S
N β(1− epop)(I + εEE + εQQ+ εJJ)

0
0
0


The vector V considers the other transfers out of these infectious compartments
minus all the transfers coming into the compartments other than new infections.
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Thus,

(33) V =


(µ+ γ1 + κ1)E
(µ+ κ2)Q− γ1E

(µ+ d1 + γ1 + γ2 + σ1)I − κ1E
(µ+ d2 + σ2)J − γ2I − κ2Q


The Jacobian matrix of F evaluated at DFE is given by

(34) F = β(1− epop)


εE εQ 1 εJ
0 0 0 0
0 0 0 0
0 0 0 0


and the Jacobian matrix of V is

(35) V =


µ+ γ1 + κ1 0 0 0

−γ1 µ+ κ2 0 0
−κ1 0 µ+ d1 + γ2 + σ1 0
0 −κ2 −γ2 µ+ d2 + σ2

 .

Let us denote

DE = µ+ κ1 + γ1,(36)

DI = µ+ σ1 + d1 + γ2,(37)

DJ = µ+ σ2 + d2,(38)

DQ = µ+ κ2.(39)

We get

(40) V −1 =
1

DE


1 0 0 0
γ1

DQ

DE

DQ
0 0

κ1

DI
0 DE

DI
0

DIγ1κ2+DQγ2κ1

DIDJDQ

DEκ2

DJDQ

DEγ2

DIDJ

DE

DJ


Thus, the effective reproduction number R, calculated as the spectral radius of the
next-generation matrix, FV −1, is given by

(41) R =
β(1− epop)

DE

(
εE + εQ

γ1
DQ

+
κ1

DI
+ εJ

γ1κ2

DJDQ
+ εJ

γ2κ1

DIDJ

)
.

We note that [28] used an alternative, direct approach that yields the same
formula for R.

A.2. Endemic equilibrium

Setting the time derivative to 0 in (2)–(7) yields
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0 = Π− µS − λS(42)

0 = λS −DEE(43)

0 = γ1E −DQQ(44)

0 = κ1E −DII(45)

0 = κ2Q+ γ2I −DJJ(46)

0 = σ1I + σ2J − µR(47)

where

(48) λ = (1− epop)β

(
I

N
+ εE

E

N
+ εQ

Q

N
+ εJ

J

N

)
.

Starting at (42) and going one equation at a time, we get

S =
Π

µ+ λ
(49)

E =
λS

DE
(50)

Q =
γ1E

DQ
=

λγ1S

DEDQ
(51)

I =
κ1E

DI
=

λκ1S

DEDI
(52)

J =
κ2Q+ γ2I

DJ
=

λS

DE

(
κ2γ1
DJDQ

+
κ1γ2
DIDJ

)
(53)

R =
σ1I + σ2J

µ
=

λS

DE

(
σ1κ1

µDI
+

σ2κ2γ1
µDJDQ

+
σ2κ1γ2
µDIDJ

)
.(54)

Thus, we get

N = S + E +Q+ I + J +R

(55)

= S

(
1 +

λ

DE

[
1 +

γ1
DQ

+
κ1

DI
+

κ2γ1
DJDQ

+
κ1γ2
DIDJ

+
σ1κ1

µDI
+

σ2κ2γ1
µDJDQ

+
σ2κ1γ2
µDIDJ

])(56)

Setting
(57)

T = DIDJDQ+κ1DJDQ+γ1DIDJ+κ2γ1DI+κ1γ2DQ+
σ1κ1

µ
DJDQ+

σ2κ2γ1
µ

DI+
σ2κ1γ2

µ
DQ,

(56) yields

(58) N = S

(
1 +

λ

DE

T

DIDJDQ

)
.
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By (58) and (50)–(54), (48) becomes

λ =
λ

1 + λ
DE

T
DIDJDQ

(1− epop)
β

DE

(
κ1 + εE + εQ

γ1
DQ

+ εJ

{
κ2γ1
DJDQ

+
κ1γ2
DIDJ

})(59)

=
λ

1 + λ
DE

T
DIDJDQ

R.

(60)

Hence,

(61) λ =
(R− 1)DEDIDJDQ

T
.

A.3. Nash equilibrium

As derived in the main text, the Nash equilibrium has to solve

(62)
λ∗

λ∗ + (1− epop)µ
= C.

By (61) and (9),

(63) λ∗ =
(
(1− epop)R0 − 1

)
k

where

(64) k =
DEDIDJDQ

T
.

Thus, (62) becomes

(65)

(
(1− epop)R0 − 1

)
k(

(1− epop)R0 − 1
)
k + (1− epop)µ

= C.

This is equivalent to

(66)
(
(1− epop)R0 − 1

)
k =

(
(1− epop)R0 − 1

)
kC + (1− epop)µC

and solving for epop yields

(67) eNE = 1− (1− C)k

(1− C)kR0 − µC
.

Moreover, the left-hand side of (65) can be rearranged as

(68)
1

1 + µ(
R0− 1

1−epop

)
k

which is decreasing in epop. So, the maximum occurs at epop = 0 and it is

(69) Ccrit =
(R0 − 1)k

(R0 − 1)k + µ
.

When C > Ccrit, the equation (65) does not have a positive solution and thus
eNE = 0.
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Also, all of the above calculations made sense for R0 > 1. When R0 ≤ 1, the
dynamics tends to the disease-free equilibrium and thus it makes sense to consider
Ccrit = 0.

To summarize, there is a critical value Ccrit for the cost C given by

(70) Ccrit =

{
(R0−1)k

(R0−1)k+µ , if R0 > 1,

0, otherwise.

A.4. LHS-PRCC

This section contains basic information on the uncertainty and sensitivity analysis
using the LHS-PRCC scheme [11, 55]. The full description of the LHS-PRCC scheme
is in [47] and the MATLAB and R implementations is in [37]. A shorter description
such as the one below, can be found, for example, in [56].

For the Latin Hyper-cube Sampling (LHS), the parameter ranges are divided into
intervals of equal probability. Those intervals are then sampled, independently for
each parameter. LHS is also called a stratified sampling without replacement. The
sampling yields an unbiased estimate of the expected model output. Compared to a
simple random sampling, it needs fewer samples to achieve the same accuracy [48].

PRCC, the partial rank correlation coefficient, between a model parameter P
and the model output O is defined by

(71) rRP ,RO
=

Cov(RP , RO)√
Var(RP )Var(RO)

where RP and RO are residuals of the rank-transformed linear regression models for
P and O.


