참고문헌
- Bhayana R. Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiology 2024;310:e232756
- Jung KH. Uncover this tech term: foundation model. Korean J Radiol 2023;24:1038-1041
- Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med 2023;29:1930-1940
- Mesko B, Topol EJ. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit Med 2023;6:120
- Li R, Kumar A, Chen JH. How chatbots and large language model artificial intelligence systems will reshape modern medicine: fountain of creativity or pandora's box? JAMA Intern Med 2023;183:596-597
- CHART Collaborative. Protocol for the development of the chatbot assessment reporting tool (CHART) for clinical advice. BMJ Open 2024;14:e081155
- Park SH, Suh CH. Reporting guidelines for artificial intelligence studies in healthcare (for both conventional and large language models): what's new in 2024. Korean J Radiol 2024;25:687-690
- Kaddour J, Harris J, Mozes M, Bradley H, Raileanu R, McHardy R. Challenges and applications of large language models [accessed on August 27, 2024]. Available at: https://doi.org/10.48550/arXiv.2307.10169
- Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks [accessed on August 26, 2024]. Available at: https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
- Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. Transformers: state-of-the-art natural language processing [accessed on August 26, 2024]. Available at: https://doi.org/10.18653/v1/2020.emnlp-demos.6
- Kim W. Seeing the unseen: advancing generative AI research in radiology. Radiology 2024;311:e240935
- Lee JH, Shin J. How to optimize prompting for large language models in clinical research. Korean J Radiol 2024;25:869-873
- Gu K, Lee JH, Shin J, Hwang JA, Min JH, Jeong WK, et al. Using GPT-4 for LI-RADS feature extraction and categorization with multilingual free-text reports. Liver Int 2024;44:1578-1587
- Sahoo SS, Plasek JM, Xu H, Uzuner O, Cohen T, Yetisgen M, et al. Large language models for biomedicine: foundations, opportunities, challenges, and best practices. J Am Med Inform Assoc 2024;31:2114-2124
- Gallifant J, Afshar M, Ameen S, Aphinyanaphongs Y, Chen S, Cacciamani G, et al. The TRIPOD-LLM statement: a targeted guideline for reporting large language models use. medRxiv [Preprint]. 2024 [accessed on August 26, 2024]. Available at: https://doi.org/10.1101/2024.07.24.24310930