DOI QR코드

DOI QR Code

Exploring the Association of Bacterial Coinfections with Clinical Characteristics of Patients with Nontuberculous Mycobacterial Pulmonary Disease

  • Seong Mi Moon (Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Hyunkyu Cho (Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Beomsu Shin (Department of Allergy, Pulmonology and Critical Care Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine)
  • Received : 2024.01.07
  • Accepted : 2024.04.24
  • Published : 2024.10.31

Abstract

Background: Clinical data for bacterial coinfection of the lower respiratory tract in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) are scarce. This study aims to assess the prevalence of bacterial coinfection and clinical features in NTM-PD patients. Methods: This retrospective study screened 248 patients with NTM-PD who underwent bronchoscopy between July 2020 and July 2022, from whom newly diagnosed NTM-PD patients were analyzed. Bacterial culture using bronchial washing fluid was performed at the time of NTM-PD diagnosis. Results: In the 180 patients (median age 65 years; 68% female), Mycobacterium avium complex (86%) was the most frequent NTM isolated. Bacterial coinfections were detected in 80 (44%) patients. Among them, the most common bacterium was Klebsiella pneumoniae (n=25/80, 31.3%), followed by Pseudomonas aeruginosa (n=20/80, 25%) and Staphylococcus aureus (n=20/80, 25%). Compared with NTM-PD patients without bacterial coinfections, patients with bacterial coinfections showed more frequent extensive lung involvement (33% vs. 1%, p<0.001). Additionally, compared with NTM-PD patients without P. aeruginosa infection, those with P. aeruginosa infection were older (74 years vs. 64 years, p=0.001), had more frequent respiratory symptoms (cough/excessive mucus production 70% vs. 38%, p=0.008; dyspnea 30% vs. 13%, p=0.047), and had extensive lung involvement (60% vs. 9%, p<0.001). Conclusion: Less than half of patients with newly diagnosed NTM-PD had bacterial coinfections, linked to extensive lung involvement. Specifically, P. aeruginosa coinfection was significantly associated with older age, more frequent respiratory symptoms, and extensive lung involvement.

Keywords

Acknowledgement

This study was presented at the 2023 European Respiratory Society International Congress.

References

  1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007;175:367-416.
  2. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J 2020;56:2000535.
  3. Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis 2014;18:1370-7.
  4. Ko RE, Moon SM, Ahn S, Jhun BW, Jeon K, Kwon OJ, et al. Changing epidemiology of nontuberculous mycobacterial lung diseases in a tertiary referral hospital in Korea between 2001 and 2015. J Korean Med Sci 2018;33:e65.
  5. Moon SM, Jhun BW, Baek SY, Kim S, Jeon K, Ko RE, et al. Long-term natural history of non-cavitary nodular bronchiectatic nontuberculous mycobacterial pulmonary disease. Respir Med 2019;151:1-7.
  6. Fujita J, Ohtsuki Y, Suemitsu I, Shigeto E, Yamadori I, Obayashi Y, et al. Pathological and radiological changes in resected lung specimens in Mycobacterium avium intracellulare complex disease. Eur Respir J 1999;13:535-40.
  7. Urabe N, Sakamoto S, Sano G, Ito A, Homma S. Characteristics of patients with bronchoscopy-diagnosed pulmonary Mycobacterium avium complex infection. J Infect Chemother 2018;24:822-7.
  8. Fujita K, Ito Y, Hirai T, Kubo T, Togashi K, Ichiyama S, et al. Prevalence and risk factors for chronic co-infection in pulmonary Mycobacterium avium complex disease. BMJ Open Respir Res 2014;1:e000050.
  9. Urabe N, Sakamoto S, Shimanuki Y, Kanokogi T, Motohashi T, Anzai N, et al. Impact of chronic co-infection in pulmonary Mycobacterium avium complex disease after treatment initiation. BMC Pulm Med 2022;22:157.
  10. Wang G, Stapleton JT, Baker AW, Rouphael N, Creech CB, El Sahly HM, et al. Clinical features and treatment outcomes of pulmonary Mycobacterium avium-intracellulare complex with and without coinfections. Open Forum Infect Dis 2022;9:ofac375.
  11. Kim SB, Lee WY, Lee JH, Lee SJ, Lee MK, Kim SH, et al. A variety of bacterial aetiologies in the lower respiratory tract at patients with endobronchial tuberculosis. PLoS One 2020;15:e0234558.
  12. Minami D, Takigawa N, Watanabe H, Ninomiya T, Kubo T, Ohashi K, et al. Safety and discomfort during bronchoscopy performed under sedation with fentanyl and midazolam: a prospective study. Jpn J Clin Oncol 2016;46:871-4.
  13. Leylabadlo HE, Kafil HS, Yousefi M, Aghazadeh M, Asgharzadeh M. Pulmonary tuberculosis diagnosis: where we are? Tuberc Respir Dis (Seoul) 2016;79:134-42.
  14. Koh WJ, Moon SM, Kim SY, Woo MA, Kim S, Jhun BW, et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J 2017;50:1602503.
  15. Chalmers JD, Goeminne P, Aliberti S, McDonnell MJ, Lonni S, Davidson J, et al. The bronchiectasis severity index: an international derivation and validation study. Am J Respir Crit Care Med 2014;189:576-85.
  16. Bewick V, Cheek L, Ball J. Statistics review 8: qualitative data: tests of association. Crit Care 2004;8:46-53.
  17. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947;18:50-60.
  18. Masuadi E, Mohamud M, Almutairi M, Alsunaidi A, Alswayed AK, Aldhafeeri OF. Trends in the usage of statistical software and their associated study designs in health sciences research: a bibliometric analysis. Cureus 2021;13:e12639.
  19. Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013;187:1118-26.
  20. Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML, et al. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 2013;68:731-7.
  21. Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev 2021;30:200299.
  22. Yamasaki K, Mukae H, Kawanami T, Fukuda K, Noguchi S, Akata K, et al. Possible role of anaerobes in the pathogenesis of nontuberculous mycobacterial infection. Respirology 2015;20:758-65.
  23. Sulaiman I, Wu BG, Li Y, Scott AS, Malecha P, Scaglione B, et al. Evaluation of the airway microbiome in nontuberculous mycobacteria disease. Eur Respir J 2018;52:1800810.
  24. Loebinger MR, Quint JK, van der Laan R, Obradovic M, Chawla R, Kishore A, et al. Risk factors for nontuberculous mycobacterial pulmonary disease: a systematic literature review and meta-analysis. Chest 2023;164:1115-24.
  25. Aksamit TR, O'Donnell AE, Barker A, Olivier KN, Winthrop KL, Daniels ML, et al. Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry. Chest 2017;151:982-92.
  26. Suska K, Amati F, Sotgiu G, Gramegna A, Mantero M, Ori M, et al. Nontuberculous mycobacteria infection and pulmonary disease in bronchiectasis. ERJ Open Res 2022;8:00060-2022.
  27. Faverio P, Stainer A, Bonaiti G, Zucchetti SC, Simonetta E, Lapadula G, et al. Characterizing non-tuberculous mycobacteria infection in bronchiectasis. Int J Mol Sci 2016;17:1913.
  28. Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021;15:649-62.
  29. Hsieh MH, Lin CY, Wang CY, Fang YF, Lo YL, Lin SM, et al. Impact of concomitant nontuberculous mycobacteria and Pseudomonas aeruginosa isolates in non-cystic fibrosis bronchiectasis. Infect Drug Resist 2018;11:1137-43.
  30. Kamata H, Asakura T, Suzuki S, Namkoong H, Yagi K, Funatsu Y, et al. Impact of chronic Pseudomonas aeruginosa infection on health-related quality of life in Mycobacterium avium complex lung disease. BMC Pulm Med 2017;17:198.
  31. Vidaillac C, Yong VF, Jaggi TK, Soh MM, Chotirmall SH. Gender differences in bronchiectasis: a real issue? Breathe (Sheff) 2018;14:108-21.
  32. Zhou YY, Wang YH, He SQ, Wang WY, Wang XY, Li DS, et al. Gender differences in clinical characteristics of patients with non-cystic fibrosis bronchiectasis in different age groups in northern China. Clin Respir J 2023;17:311-9.
  33. Chien J, Hwang JH, Nilaad S, Masso-Silva JA, Ahn SJ, McEachern EK, et al. Cigarette smoke exposure promotes virulence of Pseudomonas aeruginosa and induces resistance to neutrophil killing. Infect Immun 2020;88:e00527-20.
  34. Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2004;170:1164-71.
  35. Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020;39:799-826.