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Abstract. In this note, we investigate new types of p-adic Dedekind sums.

They interpolate the Apostol-Dedekind sum associated with quasi-periodic

Euler functions in different ways. We also obtain the integral representation
and a reciprocity relation, respectively.
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1. History of the subject

To recall the definition for the classical Dedekind sums, we first introduce the
following symbol

((x)) =

{
x− [x]− 1

2 (x ̸= integer)

0 (x integer).
(1)

Here for x ∈ R, [x] denotes the greatest integer not exceeding x and {x} denotes
the fractional part of real number x, thus

{x} = x− [x]. (2)

If h and k are coprime integers with k > 0, then the classical Dedekind sum
s(h, k) is defined by

s(h, k) =

k−1∑
µ=0

((
hµ

k

))((
µ

k

))
. (3)

In 1892, Dedekind [10] introduced this sum, which is connected with the transfor-
mation formula for the Dedekind η-function. And he also deduced the following
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well-known reciprocity formula

12hk{s(h, k) + s(k, h)} = h2 − 3hk + k2 + 1. (4)

In the later years, several mathematicians generalized s(h, k) and showed that
their generalizations also satisfy the reciprocity formulas (see [1, 2, 3, 6, 7, 19,
17, 21, 24, 26, 29, 31, 32] and the references therein). Among these, Apostol’s
generalized Dedekind sum is given by

sm(h, k) =

k−1∑
µ=0

Bm

(
hµ

k

)
B1

(µ
k

)
, (5)

where Bm (x) is the m-th Bernoulli function defined by

Bm(x) = Bm({x}) for m > 1, B1(x) = ((x)). (6)

Here Bm(x) denotes the m-th Bernoulli polynomial which are defined as the

coefficient of tm

m! in the generating function

text

et − 1
=

∞∑
m=0

Bm(x)
tm

m!
, (7)

where |t| < 2π. More than 70 years ago, Apostol [1, Theorem 1] proved a
reciprocity formula for (5).

As an companion of the above periodic Bernoulli function Bm(x), the m-th
quasi-periodic Euler function Em(x),m ≥ 0, is defined by (see [8, 19])

Em(x) = Em(x) for 0 ≤ x < 1, Em(x+ 1) = −Em(x). (8)

Here Em(x) denotes the m-th Euler polynomials which is defined by the gener-
ating function

2ext

et + 1
=

∞∑
m=0

Em(x)
tm

m!
, (9)

where |t| < π. See [3, 12, 11, 18, 19, 27] for an account of further properties of
the Euler polynomials and numbers. For x ∈ R and r ∈ Z, we have

Em(x) = (−1)[x]Em({x}), Em(x+ r) = (−1)rEm(x). (10)

For further properties of the quasi-periodic Euler functions, we refer to [3, 8, 19].
The Apostol-Dedekind sum Tm(h, k) associated with quasi-periodic Euler

functions is defined by (see [11, p. 56, (1.9)] and [19, p. 269, (1.10)])

Tm(h, k) =

k−1∑
µ=0

(−1)µEm

(
hµ

k

)
E1

(µ
k

)
, (11)

which is an analogue of the generalized Dedekind sums (5) for quasi-periodic
Euler functions, where h and k are positive integers. Notice that, as indicated
by Carlitz in [8, p.661, 2nd paragraph], the Bernoulli function are periodic, but
the Euler functions are just quasi-periodic (also comparing with Eqs. (6) and
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(10) above), thus the signs (−1)µ in the definition of the Apostol-Dedekind sum
Tm(h, k) with quasi-periodic Euler functions (11) are necessary.

The Apostol-Dedekind sum Tm(h, k) associated with quasi-periodic Euler
functions has been investigated by Hu, Kim and Kim in [11], and they also
obtained its reciprocity formula by applying the Euler-Boole summation for-
mula (see [5, p. 684, Lemma 2]). T. Kim [15] and Simesek [30] considered
another type of Dedekind sum associated with Euler numbers and polynomi-
als, which is named the Dedekind type DC-sum. In particular, Simsek [30]
has established many interesting properties for this sum, including its analytic
properties and trigonometric representations of this sum, its relations between
Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized
Lambert series (G-series), Hardy-Berndt sums. Furthermore, he also gave many
applications related to these sums and functions.

In this note, we will consider the p-adic analogue of Dedekind sums. This topic
has been investigated by several authors before. In 1985 and 1988, Rosen and
Snyder [26] and Snyder [31] gave a p-adic interpolation of Apostol’s Dedekind
sum. They commenced this sums by interpolating certain Bernoulli functions.
Then Kudo [21] discussed the p-adic Dedekind sums in a different way from
Rosen and Synder. The p-adic Dedekind sums associated with Euler numbers
and polynomials have been studied by T. Kim [16] and Simsek [29] respectively.

The previous definitions of p-adic Dedekind sums are all based on variations
of the p-adic Hurwitz zeta functions Hp(s; a, k) given by Washington in [34],
and are all restricted to s ∈ Zp. Recently, by applying Cohen [9]’s and Tangedal
and Young [33]’s definitions of p-adic Hurwitz zeta functions for s ∈ Cp, Hu
and Kim [12] extended the definition domain of the p-adic Dedekind sums from
s ∈ Zp to s ∈ Cp. They considered p-adic analogue of Carlitz’s higher order
Dedekind sums associated with both periodic Bernoulli and quasi-periodic Euler
functions, and obtained the reciprocity relations for the special values of these
p-adic Dedekind sums.

This note will introduce three new types of p-adic Dedekind sums associated
with the quasi-periodic Euler functions (see Definitions 3.1, 3.4 and 3.7), they
interpolate the above Apostol-Dedekind sum Tm(h, k) associated with quasi-
periodic Euler functions in different ways (see Theorems 3.3, 3.6 and 3.8). We
prove the integral representation and a reciprocity relation, respectively (see
Proposition 3.2 and Theorem 3.8). Our main tool is the fermionic p-adic integral
which will be recalled in the next section.

2. The fermionic p-adic integral

In this section, we shall recall the definition of the fermionic p-adic integral
for a p-adic function f and the associated p-adic Hurwitz-Washington functions.

Let p be an odd prime number. We denote by Zp,Qp, and Cp the ring of
p-adic integers, the field of p-adic numbers, and the completion of the algebraic
closure of Qp, respectively. Let Z×

p = Zp\pZp and let |·|p be the p-adic valuation
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normalized so that |p|p = p−1. For each a ∈ Zp with p ∤ a, a can be uniquely
written in the form

⟨a⟩ = ω−1(a)a, (12)

where ω is the Teichmüller character. If x ∈ Zp, let(
x

j

)
=

1

j!
x(x− 1) · · · (x− j + 1), j > 0;

(
x

0

)
= 1. (13)

Of cause
(
x
j

)
simply reduces to a binomial coefficient if x is a nonnegative integer.

We say that f : Zp → Cp is uniformly differentiable function (or, equivalently,
strictly differentiable function) at a point t ∈ Zp, and we write f ∈ UD(Zp), if
the difference quotients Φf : Zp × Zp → Cp such that

Φf (x, y) =
f(x)− f(y)

x− y
(14)

have a limit f ′(t) as (x, y) → (t, t), x ̸= y (see [25, p. 218]).
We also recall the µ−1-measure

µ−1(t+ pNZp) = (−1)t (15)

for t ∈ Zp, which was independently found by Katz [13, p. 486] (in Katz’s nota-

tion, the µ(2)-measure), Shiratani and Yamamoto [28], Osipov [23], Lang [22] (in
Lang’s notation, the E1,2-measure), T. Kim [14] from very different viewpoints.
Obviously, in contrast with the Haar distribution, the µ−1-measure is bounded
under the p-adic valuation, so it can be applied to integrate the continuous func-
tions on Zp (see [20, p. 39, Theorem 6]). The p-adic integral I−1(f) on Zp, in
the fermionic sense, is defined by

I−1(f) =

∫
Zp

f(t)dµ−1(t) = lim
N→∞

pN−1∑
t=0

f(t)(−1)t, (16)

where f ∈ UD(Zp). It has also been defined independently by Shiratani and
Yamamoto [28] in order to interpolate the Euler numbers p-adically. Osipov [23]
gave a new proof of the existence of the Kubota-Leopoldt p-adic zeta function
by using the integral representation

Iε(f) =

∫
Zp

f(t)dµε(t) = lim
N→∞

plN−1∑
t=0

f(t)εt, (17)

where f ∈ UD(Zp), ε
k = 1, ε ̸= 1, (k, p) = 1, and k | (pl − 1). Note that when

k = 2, Iε(f) is the fermionic p-adic integral I−1(f) on Zp.
The p-adic Hurwitz-Washington function Hp(s; a,N) is defined by (see [26,

p. 24])

Hp(s; a,N) = ω−1(a)⟨a⟩s
∞∑
j=0

(
s

j

)(
N

a

)j

Ej(0) (18)
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for a ∈ Z×
p , s ∈ Zp,

(
s
j

)
= s(s−1)···(s−j+1)

j! , and p | N. Since∣∣∣∣(sj
)∣∣∣∣

p

≤ 1,

∣∣∣∣Na
∣∣∣∣
p

< 1,

and
|Ej(0)|p ≤ 1

for all j ≥ 0 (by 2jEj(0) ∈ Z), the functions Hp(s; a,N) converge and define a
p-adic continuous function for s on Zp (see [26, p. 24] and [34, Theorem 5.9]).

As in [26, Section 1], let s = m, where m is a positive integer, for a ∈ Z×
p and

p | N, we have

Hp(m; a,N) = ω−1(a)⟨a⟩m
m∑
j=0

(
m

j

)(
N

a

)j

Ej(0)

= ω−1(a)

(
⟨a⟩
a

)m

Nm
m∑
j=0

(
m

j

)( a

N

)m−j

Ej(0)

= ω−m−1(a)NmEm

( a

N

)
.

(19)

In particular, if m+ 1 ≡ 0 (mod p− 1), then

Hp(m; a,N) = NmEm

( a

N

)
, (20)

where a and N are positive integers such that (p, a) = 1 and p | N. Therefore,
Hp(s; a,N) is a p-adic continuous extension of NmEm

(
a
N

)
.

From (19), we have the following integral representation.

Lemma 2.1. For p | N and p ∤ a, we have

Hp(s; a,N) = ω−1(a)⟨a⟩s
∫
Zp

(
1 +

Nt

a

)s

dµ−1(t)

and

Em

( a

N

)
=

∫
Zp

( a

N
+ t
)m

dµ−1(t),

where m is a positive integer and N ̸= 0.

Proof. Let s ∈ Zp. Then (see [25, p. 266] and [31, p. 295])(
1 +

Nt

a

)s

=

∞∑
j=0

(
s

j

)(
N

a

)j

tj ,

since t ∈ Zp and N
a ∈ pZp. From (16), we deduce easily that (see [14])∫

Zp

tjdµ−1(t) = Ej(0),

where j is a nonnegative integer. Combining the above identity with (19), we
get the desired result. □
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3. p-adic interpolations of Apostol-Dedekind type sums

Set

tm(h, k) :=

k−1∑
µ=1

(−1)µ+[
hµ
k ]µ

k
Em

(
hµ

k

)
. (21)

The p-adic function Hp(s; a,N) allows us to interpolate kmtm(h, k), where p | k
and (hµ, p) = 1 for each µ = 1, 2, . . . , k − 1 :

kmtm(h, k) =

k−1∑
µ=1

(−1)µ
µ

k
Hp(m; (hµ)k, k), (22)

where m+ 1 ≡ 0 (mod p− 1) (see (20)).
Here (α)k denotes the integer x ∈ [0, k) such that α ≡ x (mod k).
Inspired by (11) and an argument similar with (22), in the following, for p | k

but p ∤ h, we define a new type of p-adic Dedekind sum which is associated with
the quasi-periodic Euler functions.

Definition 3.1. Let h and k be integers such that k > 0, p | k but p ∤ h. Then

Tp(s;h, k) =

k−1∑
µ=0
p∤µ

(−1)µ+[
hµ
k ]E1

(µ
k

)
Hp(s; (hµ)k, k)

for all s ∈ Zp, where (α)k denotes the integer x ∈ [0, k) such that α ≡ x (mod k).

Using Lemma 2.1 and Definition 3.1, we have its integral representation.

Proposition 3.2 (Integral representation). Let h, k be integers such that k >
0, p | k but p ∤ h. Then we have

Tp(s;h, k) =

k−1∑
µ=0
p∤µ

(−1)µ+[
hµ
k ]E1

(µ
k

) ⟨(hµ)k⟩s

ω(hµ)

∫
Zp

(
1 +

kt

(hµ)k

)s

dµ−1(t)

for all s ∈ Zp.

Theorem 3.3 (Interpolation). For any integers m,h, and k such that m ≥
0, k > 0, p | k but p ∤ h, we have

Tp(m;h, k) = km
k−1∑
µ=0
p∤µ

(−1)µE1

(µ
k

)
ω−m−1(hµ)Em

(
hµ

k

)
.

Moreover, if m+ 1 ≡ 0 (mod p− 1), then

Tp(m;h, k) = kmTm(h, k)− pm
(
k

p

)m

Tm

(
h,

k

p

)
.
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Proof. The proof goes along the same line as in [31, p. 295, Proposition 2]. Note
that by (8) and (10), we have

Em

(
hµ

k

)
= Em

(
(hµ)k
k

+

[
hµ

k

])
= (−1)[

hµ
k ]Em

(
(hµ)k
k

)
= (−1)[

hµ
k ]Em

(
(hµ)k
k

)
,

(23)

since
hµ

k
=

(hµ)k
k

+

[
hµ

k

]
with 0 ≤ (hµ)k

k
< 1.

The first formula follows from (19), (23) and Definition 3.1 by observing that
ω−m−1((hµ)k) = ω−m−1(hµ) for p | k and ω−m has period dividing by p.

To see the second formula, if m+1 ≡ 0 (mod p− 1), then from the first part
and (11), we get

Tp(m;h, k) = km
k−1∑
µ=0

(−1)µE1

(µ
k

)
Em

(
hµ

k

)

− km
k−1∑
µ=0
p|µ

(−1)µE1

(µ
k

)
Em

(
hµ

k

)

= kmTm(h, k)− km

k
p−1∑
µ=0

(−1)pµE1

(
µ
k
p

)
Em

(
hµ
k
p

)

= kmTm(h, k)− kmTm

(
h,

k

p

)
,

(24)

since p is an odd prime. This completes the proof. □

In order to extent the Definition 3.1 to the case of p ∤ hk, as the above
situation, we now consider the problem on interpolating the term NmEm

(
a
N

)
p-adically, where a and N are positive integers such that p ∤ aN. We try to
reduce this problem to the above case (where p | N) (see (20)). Notice that, by
a Raabe type theorem (see [3, p. 355, (1.2.13)]), we have (see [4, p. 335, (2.8)]
and [8, p. 661, (1.3)])

NmEm

( a

N

)
= Nmpm

p−1∑
j=0

(−1)jEm

( a
N + j

p

)

=

p−1∑
j=0

(−1)j(pN)mEm

(
a+ jN

pN

) (25)
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for m ∈ N0. If (p,N) = 1 and a is an arbitrary integer, then the set

{0N + a, 1N + a, 2N + a, . . . , (p− 1)N + a}

form a complete residue system modulo p. So, among j = 0, 1, 2, . . . , p − 1, we
have just one term satisfying a+ jN ≡ 0 (mod p), where p ∤ aN and (a,N) = 1.
So due to the definition (18), each term in the last sum of (25) can be interpolated
p-adically except for one term which satisfying a + jN ≡ 0 (mod p), which is
j = (N−1(p− a))p. Thus the exceptional term will be written as

(−1)(N
−1(p−a))p(pN)mEm

(
a+ (N−1(p− a))pN

pN

)
,

and by subtracting it from (25), we may possible to interpolate

NmEm

( a

N

)
− (−1)(N

−1(p−a))p(pN)mEm

(
a+ (N−1(p− a))pN

pN

)
(26)

p-adically. Therefore if we define

Hp(s; a,N) =

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j+[
a+jN
pN ]Hp(s; (a+ jN)pN , pN), (27)

then by (20), the definition of the quasi-periodic Euler function Em(x) (8) and
(25), we see that

Hp(m; a,N) =

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j+[
a+jN
pN ]Hp(m; (a+ jN)pN , pN)

=

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j+[
a+jN
pN ](pN)mEm

(
(a+ jN)pN

pN

)

=

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j+[
a+jN
pN ](pN)mEm

(
(a+ jN)pN

pN

)

=

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j(pN)mEm

(
a+ jN

pN

)

=

p−1∑
j=0

a+jN ̸≡0 (mod p)

(−1)j(pN)mEm

(
a+ jN

pN

)

= NmEm

( a

N

)
− (−1)(N

−1(p−a))p(pN)mEm

(
a+ (N−1(p− a))pN

pN

)
(28)
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for any positive integer m such that m+ 1 ≡ 0 (mod p− 1). Therefore we get

Hp(m; a,N) = NmEm

( a

N

)
− (−1)(N

−1(p−a))p(pN)m

× Em

(
a+ (N−1(p− a))pN

pN

)
.

Inspired by (22) and (27), for p ∤ hk, we define another type of p-adic Dedekind
sums Tp(s;h, k) associated with the quasi-periodic Euler functions.

Definition 3.4. Let h, k be integers such that k > 0 and p ∤ hk. Then

Tp(s;h, k) =

k−1∑
µ=0

(−1)µE1

(µ
k

) p−1∑
j=0

p∤(hµ+kj)

(−1)j+[
hµ+kj

pk ]

×Hp(s, (hµ+ kj)pk, pk)

for all s ∈ Zp.

Lemma 3.5 ([11, p. 58, Lemma 2.3]). For odd positive integers a and b with
(a, b) = 1, we have

b−1∑
j=0

(−1)jEm

(
x+ aj

b

)
= b−mEm(x)

for m ≥ 0 and arbitrary real numbers x.

Theorem 3.6 (Interpolation). For any integers m,h, and k such that m ≥
0, k > 0 and p ∤ hk, we have

Tp(m;h, k) =

k−1∑
µ=0

(−1)µE1

(µ
k

) p−1∑
j=0

p∤(hµ+kj)

(−1)j
(pk)m

ωm+1(hµ+ kj)

× Em

(
hµ+ kj

pk

)
.

Moreover, if m+ 1 ≡ 0 (mod p− 1), then

Tp(m;h, k) = km(Tm(h, k)− pmT ∗
m((p−1h)k, k)),

where (p−1h)k denotes the integer x ∈ [0, k) such that px ≡ h (mod k) and

T ∗
m((p−1h)k, k) :=

k−1∑
µ=0

(−1)µ+(k−1(p−hµ))pE1

(µ
k

)
Em

(
(p−1h)kµ

k

)
.

Proof. The first formula follows from (23) and Definition 3.4 as in the proof of
Theorem 3.3.
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To see the second formula, if m + 1 ≡ 0 (mod p − 1), then from Lemma 3.5
we get

Tp(m;h, k) =

k−1∑
µ=0

(−1)µE1

(µ
k

)
kmpm

p−1∑
j=0

(−1)jEm

(
hµ+ kj

pk

)

−
k−1∑
µ=0

(−1)µE1

(µ
k

)
kmpm

p−1∑
j=0

p|(hµ+kj)

(−1)jEm

(
hµ+ kj

pk

)

= km
k−1∑
µ=0

(−1)µE1

(µ
k

)
Em

(
hµ

k

)

− (kp)m
k−1∑
µ=0

(−1)µ+(k−1(p−hµ))pE1

(µ
k

)
Em

(
(p−1h)kµ

k

)
= kmTm(h, k)− (pk)mT ∗

m((p−1h)k, k)

= km(Tm(h, k)− pmT ∗
m((p−1h)k, k)),

(29)

because

hµ+ kj ≡ 0 (mod p)

and

hµ+ kj ≡ hµ (mod k)

implies that

hµ+ kj ≡ p(p−1h)kµ (mod pk).

This completes the proof. □

Finally, motived by the definition (11) and Lemma 2.1, we define the following
type of p-adic Dedekind sums based on the double fermionic p-adic integral.

Definition 3.7. Let h and k be positive integers such that (h, k) = 1 and p ∤ hk.
For any s ∈ Zp, we put

Πp(s;h, k) =

p−1∑
i,j=0
i ̸=j

(−1)j+[
hj
p ]+i+[ ki

p ]⟨k(hj)p − h(ki)p⟩s+1

×
∫
Zp

∫
Zp

(
1 +

p(kt1 − ht2)

k(hj)p − h(ki)p

)s+1

dµ−1(t1)dµ−1(t2).
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In what follows, we investigate it properties. Let m be a positive integer such
that m+ 1 ≡ 0 (mod p− 1). From Definition 3.7, we obtain

Πp(m;h, k) =

p−1∑
i,j=0
i ̸=j

(−1)j+[
hj
p ]+i+[ ki

p ]

×
∫
Zp

∫
Zp

(k(hj)p − h(ki)p + p(kt1 − ht2))
m+1

dµ−1(t1)dµ−1(t2)

=

p−1∑
i,j=0
i ̸=j

(−1)j+[
hj
p ]+i+[ ki

p ]
m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhl

× pm+1−l

∫
Zp

(
(hj)p
p

+ t1

)m+1−l

dµ−1(t1)

× pl
∫
Zp

(
(ki)p
p

+ t2

)l

dµ−1(t2).

(30)
Thus by (10), (30) and Lemma 3.5, we find that

Πp(m;h, k) =

m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhl

× pm+1

p−1∑
i,j=0
i ̸=j

(−1)j+[
hj
p ]+i+[ ki

p ]Em+1−l

(
(hj)p
p

)
El

(
(ki)p
p

)

=

m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhl

×
(
pm+1

p−1∑
i,j=0

(−1)j+iEm+1−l

(
hj

p

)
El

(
ki

p

)

− pm+1

p−1∑
i=0

(−1)i+iEm+1−l

(
hi

p

)
El

(
ki

p

))
.

(31)

Therefore, by (25) we have

Πp(m;h, k) =

m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhlEm+1−l(0)El(0)

− pm+1(kT ∗ − h)m+1

(
h k

p

)
= (kE(0)− hE(0))m+1 − pm+1(kT ∗ − h)m+1

(
h k

p

)
,

(32)
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where

(kE(0)− hE(0))m+1 =

m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhlEm+1−l(0)El(0)

and

(kT ∗ − h)m+1

(
h k

p

)
:=

m+1∑
l=0

(−1)l
(
m+ 1

l

)
km+1−lhlT ∗

m+1−l,l

(
h k

p

)
with

T ∗
m,n

(
h k

p

)
:=

p−1∑
i=0

Em

(
hi

p

)
En

(
ki

p

)
(cf. [17, p. 450, (10)]). Now we consider the integrand in (30). It is easily seen
that

(k(hj)p − h(ki)p + p(kt1 − ht2))
m+1

= (−1)m+1(h(ki)p − k(hj)p + p(ht2 − kt1)
m+1.

(33)

Then by the first identity of (30) and notice that p is an odd prime by our
assumption, for m+ 1 ≡ 0 (mod p− 1), we have

Πp(m;h, k) = Πp(m; k, h).

In conclusion, we have obtained the following results.

Theorem 3.8 (Reciprocity relation and interpolation). Let Πp(m;h, k), etc., be
defined as above and let m,h, k be odd positive integers such that (h, k) = 1, p ∤ hk
and m+ 1 ≡ 0 (mod p− 1). Then we have

Πp(m;h, k) = Πp(m; k, h)

and

Πp(m;h, k) = (kE(0)− hE(0))m+1 − pm+1(kT ∗ − h)m+1

(
h k

p

)
.
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