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SIMPSON-HADAMARD’S INEQUALITIES FOR
HADAMARD K-FRACTIONAL INTEGRALS

ASRAA ABDUL JALEEL HUSIEN

ABSTRACT. In this paper, we present some Hadamard-Simpson type in-
equalities for Hadamard k-fractional integrals of a function f. These in-
equalities are based on convexity of |f’|, the absolute value of derivative of
f. Also, a lower bound for k-fractional integrals is presented in the presence
of the convexity of f.
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1. Introduction

The inequalities are very important to know the lower bound and/or upper
bound of an important statement such as a mean value of a function. But, these
inequalities usually need some conditions such as convexity ([5, 11, 15]). It is
well known that the function f : [a,b] — R is convex if for each z1,z2 € [a, D]

flpwy+ (1= p)ze) < pf (1) + (1= p) f(22), e [0,1].

One of the important inequalities presenting an estimation of mean value for
a convex function f in a finite interval is Hermite-Hadamard-type inequalities
(HHIs) [1]. It states that for a convex function f : [a,b] — R, where a < b the
following holds:

I

a+b /f f()+f()

2 _b—a 2

The proofs for the inequalities of HHIs are found in many literatures ([1, 4, 10,
11]). From view point of numerical analysis, the first and second inequalities in
HHIs can be obtained by the error theorems on midpoint rule and trapezoidal
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1052 A. Abd Jaleel Husien
rule of numerical integration. If f € C?([a,b]), the midpoint integration rule
gives [2]:

a+b _(b—a)3 "
5 )= o f &), a<&<h

/f(fc)dx—(b—a)f(

The convexity of f implies that f// > 0 and so the first inequality of HHI is
concluded.
Moreover, for f € C? ([a,b]), the trapezoidal integration rule gives [2]:

1"

b —a _a3
[ t@de- 50 @ sy =P @ a<e<n

By convexity of f, we have f” > 0 and so the second inequality of HHIs is
concluded.

Simpson’s integration rule also follows an important inequality for mean value
of a function f in [a,b]. If f € C*([a,b]), the Simpson’s integration rule gives

2]
b a _a5
[ t@a—go-a (s@+ar 0+ 1) =Ll 99, a<e <o

Let f” be a convex function on (a,b), then f*) > 0 that implies

I fla) +4f(%3°) + f(b)
b_a/af(x)dajg 5 .

Then, if f and f” are convex functions on (a,b), then

a b a otd
;b)gbia/a f(x)dng( )+4f(62 )+f(b)7

that are called Hadamard-Simpson type inequalities (HSIs).

Simpson-Hadamard’s inequalities are a powerful tool in the study of Hadamard
k-fractional integrals. These inequalities provide bounds on the k-fractional in-
tegrals of a function, which are useful in many areas of mathematics, includ-
ing analysis, probability theory, and mathematical physics. The Hadamard k-
fractional integral is a generalization of the Riemann-Liouville fractional inte-
gral, and it has many applications in the study of differential equations, partial
differential equations, and other areas of mathematics. Simpson-Hadamard’s
inequalities provide a way to estimate the value of the k-fractional integral of
a function over a given interval, which is important in many applications. In
particular, Simpson-Hadamard’s inequalities are useful in the study of functions
that are not necessarily continuous or differentiable. They provide a way to
estimate the value of the k-fractional integral of such functions, which can be
difficult to compute directly. By providing bounds on the k-fractional integral,
Simpson-Hadamard’s inequalities allow mathematicians to study the behavior
of these functions in a rigorous and systematic way.
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An extension of HHI [8] and HSIs [3] is on the Hadamard fractional integrals
in which the kernel is a log function. If f is a function in L;([a,b]) in which
0 < a < b, then the left and right Hadamard fractional integrals of f from order
a denoted respectively by J&, f and J; f are defined by [6, 8, 14]

o B 1 z xr \a—1
Jov f(x) = F(a)/a <log¥ ) f(t)dt, x> a,
and
b a
Jie f(z) = ﬁ/ (log% ) 1f(t)dt, x <D,
where

Ia) = / z* e %dx, a >0,
0

is the Gamma function.

Note that when a = 1, we have I' (1) = 1 and from there J&, f(z) and J;* f(x)
will be classic integral.

A generalization of Hadamard fractional integrals is Hadamard k-fractional in-
tegrals that are defined by [7, 10]

o,k o 1 r x\ %!
Ja+ f(l') = m/a (logz ) f(t)dt, T > a,

and

b oy
Jf‘,’kf(x) = ﬁm)[ <log; > f(t)dt, xz <b,

where

0o L
Ti(a) = / e F dt, a>0,
0

is the k-Gamma function. It is notable that the particular case k = 1 gives the
usual Hadamard fractional integrals.

(1) Some equalities on the Hadamard fractional integrals

In this section, we present some equalities on the Hadamard k-fractional inte-
grals.

Theorem 1. Let a < b and f : [a,b] — R be a differentiable function such
that f, f € L, ([a,b]). Then, for each positive integer k and real positive «, the
following holds:
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1 a,k 2 ok
ka (OL) [Wga*—b)(](%“’)_f(a) + (a—i—b)n(O log &2 “‘H’ )Ja+ f( )
2  gxkrratd 1

+3(a+b)u(0 10ga+b )be .f( 2 ) + 6b77(0 10ga+b ) (a+b)+f( )}

a)+4f (Y4 F(b a+b
— f(62 L = 6#(0,1;g"'—+b) fa 2 (log log“+b) f (t)dt

atb

1 a+b a+b
(otog ) du 1085 log ) [ ()it

1 b ot ,
ooy ] o v (lo82lts Jowcy ) 5 ()it

6 /
_mfa+b Ui <logt 710ga+b )f (t)dt},

where
q o
n(p,q)=/ et e d,
P
and
q o
u(p,cJ):/ w¥ledr .
p
Proof. .y
Using integration by parts and taking u(t) = f(t) and dV = (log%t2 ) dr we
have
t &1
a+b \*
t) = ! dr .
vio= [ (") ar
Then,
- a a+b a o7
TR = ey f.? (ogst)” Lr(t)dt
a+b ath a+b -1
- (e I e e
a+b

- )’ (f (log%t2) * - dT) f’(t)dt).

On the other hand, by a change of variable x = log %™ atb e have

t X1 log &+t
b \F b 8 5a o .
/ 10ga+ dr = a+t / x?_le_ldx.
a 27— 2 loga+b
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This equality and (1) imply

a a a lo, “—tb a_q1 _
Tl f(eg) = s (o) (f(gb)fo S gk levdy
atb a+b (2)
- [ (Lloggai‘; x%_le_mdx) f’(t)dt).
08757
the equality (2) becomes

o a+b
T F(—)

0 +b +b + +b . a+b
__a a a B a a /
© 2k (a) (f( 5 ) <O,log % > /a n(log 5108 )f(t)dt).

Then,

2Ky (c) ak ¢rath
(a+b)7](0,log‘12—';l’ ) JU«+ f( )
atb

= f(ef) - n(lia%b)fa 2 p (loga;tb ,log%b )f/(t)dt.
(3)

Similarly, by taking U(t) = f(t) and dV = (logt %_1dt, we have
Yy, DYy g gu

a+b
= Fye-1
V(t)=— /t (1ogg ) dr.
Then,
a,k _ 1 atb t V&1L
J(%M),f(a) = mfa (logg) f(t)dt

afd r\w 1L
= m(ﬂa)fa? (logZ )* “dr

a+b

atb atb o ’
+ L (7 gz ) FNar) £ (at )
By change of variable x = logZ , the relation (4) is rewritten by

o,k a 10‘17'*;b a_q1 4
TagsyJ@) = mm(f(a)fo“ rt e dy

agb ath ,
+ [2 ( li)oggf“ ¥k~ tetdxy ) f(@t)dt )
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The relation (5) is rewritten by

a,k
Tk, @

a a+b 50 t a+b ,
= T () <f(a)u (O,log 7 ) +/a I <loga ,log 5 >f (t)dt) .

Then,

kL' () .k
—_—J,
ap (O,logaTle’) (3 f(a)
= f( )+1/a§b log = 1o atb F(t)dt (6)
= f(a (0 10ga+b) i 1Y ga, g % .

In a similar manner, we obtain
kLk(a) o
Tk S (0)
bn (0 loga+b )
1 b b 2b ,
0= s [ (o w2 ) Fde @
(0 1Oga+b ) 2

and

2k () o,k pratb
(aer),u(O,logaQ—fb )Jb7 f( 2 )

= f(aTer) + %b) fa+b H (lo'ga+b ’1Oga+b ) f

;J,(O,logm

’

(t)dt .

Thus, in view of (3) and (6-8), the theorem is proved.
By a change of variable x — —z, we have

pipq)=(-1)F"

n(=q,—p).
This equality and noting that —logez = logl/x , we can deduce the following
corollary:

Corollary 2. Under the conditions given in Theorem 1, the following holds:

(— 1)27 a,k 2 a.k ¢ratd
kg (o) Gan(log 22,0 )J( a;rb)—f(a) + 34(a+b)n(0 log %P )Ja+ f( )

2(—1) %! ak 2 ok @+ +F ()
3(a+b)n(10g 2850 )J ‘f( ) 3bn(0 log 2% )J(“T“’)+f(b) 6
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el atb
=_(DF - ) [, 7 n(logt  logett )f (t)dt

6n(loga+b
a+b ,
~Suoresz ) Ja 1 (08%5E Jlog L ) f (1)t
% b 2t 2b ’
+377(loga27fb7() ) faTH K (10ga+b 710ga+b ) f (t)dt

_m fa+b U] (logt ,IOgHb ) f (t)dt.

(1) Some inequalities for Hadamard k-fractional integrals

In this section, we present, a lower bound and an upper bound for Hadamrd
k-fractional integral.

Theorem 3. Let a < b and f : [a,b] — R be a differentiable function such
that f, f € L, ([a, b]). Moreover, assume that f’ is a convex function. Then, for
each positive integer k and real positive «, the following inequality holds:

KTy (@) (~DE gak 9 ok iath
b [6@77(1%5&70 R ARAO R e e EARACE

_2=DF qakpiatby 2 qak
starom(ionZy0) o T2 T mmiog s ) ey (b)]

_ fla)+af(HER) 41 k)
6

<3 (If @l +1£ ®)1)-

Proof. By Corollary 2 and triangular inequality, we have

(—1)%_1 a,k 2 o,k pra+b
e [()‘Q)f % syt S

2(—1)% ! ak p/ath o,k
+—21,0)be f(%) + W‘J(aﬂ +f(b)1

3(a+b)n(10g D)
_ @) +4F(SF)+£(b)
6

atb a+b a+b
a3 n(log P Jlog ¢ ) _ (log Jlog %55 ) ’

< a |: 6n(log fjb 0 ) 317(0 log“"'b ) f (t)dt
b (log T 7log th ) (log? ,logaT_b ) ’

+ | fag { (g ZE0 ) T on(otonh ) [ (t)dt].
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Now,

n(log ,log? ) logatt 1 a+b 1
M, := max arh ! (og 8 20 )

at<E2 | 6y (1oga—+ab,0 ) 3n (O 10ga+b ) e

and

1 (log %t log %t ) (logt ’1oga+b )

M5 := max —
67 <0,loga—+b )

afb<i<n|  3n (log%iP,0 )

W =

This implies that

(—1)%71 a,k 2 a,k ¢ratb
ka(a) 6a7)(10g a,2-{{—1b 0 )J( a+b) f(a) + 3(a+b)77(0 loga+b )Ja+ f( 2 )
_2(=DF ' gakpratby, 2 gqak
+3(a+b)n(log02_fb,0 )J f( 2 ) + Sbn(O,log% )J(a+b)+f(b)]
f<a>+4f(“+”>+f<b>

< (My + M) [ |f ()ldt = 2 [} £ (t)]dt.

Now, taking t = a (1 — s) + bs, for 0 < s < 1 and using the convexity of f’, we
have

(—1)k ! a,k ak ¢(ath
kL (c) [GQU(log 22, )J(aTer)—f(a) + 3(atb)n (O log 20 )Ja+ f457)

a+b

_2=DF ' gakpradkby, 2 gqak
+3(a+b)n(loga2£b 0 )Jb’ f( 2 ) + an(O logaer )J atby +f( )]
o atb
_f( )+4f(62 )+£(b) S% fo ‘f 1—8 +b8 ‘dS
<2 (If @l +1F ®)). m
NOTE: If J“aﬁb), fla), JHFfF(ag), gk ety and J%F, L F(b) are

(a+b +
positive values, then in view of Theorem 3,

SN [J{iﬁb) J(@) + TP + TR (450 + T +f(b)1

_ Fa)+Af (D) 1)
6

<:(IF @l +1F ®)).
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where

. (-)&?! 2 2(—1)% 1 2 }
6an (logfj:b,o ) "3(atb)y (0,1og”;;b ) "3(a+b)n (1oga2‘+bb,0 ) " 36 (0,1oga2—fb >
Also, If J“ﬂ j“_b), fla), JEFF(eg), TP F(eEL)  and Jaaﬁb)+ f(b) are negative
values, then in view of Theorem 3,

o [J;:gb)ﬂ ) TP+ TP + T S (b )]

_ fla)+af(HE)+ 1)
6

<3 (IF @I+17 v)),

where

" (-1%~? 2 2(—-1)%F 1 2 }
6an (logf—fb,o ) ’ 3(a+b)n (O logaer ) ' 3(a+0b)n (logffb,o ) ' 3bn (0,1ogaﬁ’b )

In the following, we present a lower bound for J¢, f(b)—l—Jba,’kf( ) and Jaafb) fla)+

TARF5E) 4 TP + T 0.

Theorem 4. Let 0 < a < b, and f : [a,b] — R be a convex function. Then, the
following inequalities hold:

a1
- kru@ (0 (s ) <TI0+ )

and

=R

(0= a)hTul) 7 (3452) (omt2 )T 4 7 (+52) (1ox 2 )

]

Proof. For 0 < s <1,let x = as+(1—s)band y = bs+ (1 — s) a. The convexity
of f implies that

O <1 (TH) < 31 @+ 3 ).

ST (@) + TP + TR (S0 + T S ).

Then,

FOSD < Sfas+ (1= 9)0) + 57 (s + (1= 5)a), ©)

Now, we define the operator T for each positive real valued p and g,

T (p—q) =logp — logg.
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It is seen that if p > ¢, then T'(p — q) is a positive. Multiplying both side of (9)
by T [(b — a)s] and taking integral yield:

mw Jo FEDT0—a)s)F ds
< ot Jo 37 (s + (L= )T (6~ a) )T s

e Jo B (bs (1= ) a)(T (b~ a) s F ds.

We note that

/01 (T[(b—a)s])* 'ds = /01 (logz )?Z—lds ) <logz )‘,:

-1

Then,
F(252) (log? )%‘1
= (b a ka(a) f - 37)) Lda
b a
+ =ity Ju 37 W) (Tly —a))* 'y
:7 log? %_1d b log ¥ %—ld
2(b—a)kly (o f f (Ogm) x+fa f(y)(oga) Y
= B=ar@ [ J2 f(b )+in’kf($)} :
Thus,

D (o6 )" < g e 0+ ]

This inequality gives:

£ (252) (log %522 ) F71 4 £ (2522) (log 2y )

a1

< e [Tk, @)+ TR IR 4 T ) + I ).
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