DOI QR코드

DOI QR Code

PROLONGATION OF G-STRUCTURES IMMERSED IN THE GOLDEN STRUCTURE TO TANGENT BUNDLES OF HIGHER ORDER

  • MANISHA M. KANKAREJ (College of Science and Liberal Arts, Rochester Institute of Technology) ;
  • GEETA VERMA (Department of Mathematics, Shri Ramswaroop Memorial Group Of Professional Colleges)
  • Received : 2023.04.04
  • Accepted : 2024.05.21
  • Published : 2024.09.30

Abstract

The aim of the present paper is to study the lifts of a golden structure to tangent bundles of order r. We proved that r-lift of the golden structure F in the tangent bundle of order r is also a golden structure. We have also proved some theorems on the projection tensor in the tangent bundle of order r. Later we have established prolongations of G-structures immersed in the golden structure to the tangent bundle of order r and 2. Finally, we constructed few examples of the golden structure that admit an almost para contact structure on the tangent bundle of order 3 and 4.

Keywords

References

  1. S. Azami, General natural metallic structure on tangent bundle, Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), , 81-88.
  2. A. Gezer, A. Magden, Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B 38 (2017), 985-998.
  3. S.I. Goldberg, N.C. Petridis, Differentiable solutions of algebraic equations on manifolds, Kodai Math. Sem. Rep. 25 (1973), 111-128.
  4. M.N.I. Khan, J.B. Jun, Prolongations of G-structures immersed in generalized almost rcontact structure to tangent bundle of order 2, J. Chungcheong Math. Soc. 31 (2018), 421-427.
  5. M.N.I. Khan, Novel theorems for metallic structures on the frame bundle of the second order, Filomat 36 (2022), 4471-4482.
  6. A.J. Ladger, K. Yano, Almost complex structures on tensor bundles, J. Differ. Geom. 1 (1967), 355-368.
  7. A. Magden, A. Gezer, K. Karaca, Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom. 13 (2020), 75-86.
  8. A. Morimoto, Lifting of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J. 40 (1970), 99-120.
  9. A. Morimoto, Prolongations of G-structures to tangent bundles, Nagoya Math. J. 32 (1968), 67-108.
  10. M. Ozkan, F. Yilmaz, Prolongations of golden structures to tangent bundles of order r, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65 (2016), 35-48.
  11. K. Yano, E.T. Davis, Metrics and connections in the tangent bundle, Kodai Math. Sem. Rep. 23 (1971), 493-504.
  12. K. Yano, Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold, Proc. Roy. Soc. Edinburgh Sect. A 67 (1967), 277-288.
  13. K. Yano, S. Ishihara, Differentiable geomtry of tangent bundles of order 2, Kodai Math. Sem. Rep. 20 (1968), 318-354.
  14. M. Altunbas, L. Bilen, A. Gezer, Remarks about the Kaluza-Klein metric on the tangent bundle, International Journal of Geometric Methods in Modern Physics 16 (2019), 1-11.
  15. L. Bilen, S. Turanli and A. Gezer, On Kahler-Norden-Codazzi golden structures on pseudo-Riemannian manifolds, International Journal of Geometric Methods in Modern Physics 15 (2018), 1-10.
  16. A.M. Blaga, M. Crasmareanu, Golden-statistical structures, Comptes rendus de l'Academie bulgare des Sciences 69 (2016), 1113-1120.
  17. M. Crasmareanu, C.E. Hretcanu, Golden differential geometry, Chaos, Solitons and Fractals 38 (2008), 1229-1238.
  18. L.S. Das, M.N.I. Khan, Almost r-contact structures on the tangent bundle, Differential Geometry-Dynamical Systems 7 (2005), 34-41.
  19. L.S. Das, R. Nivas, M.N.I. Khan, On submanifolds of codimension 2 immersed in a hsu-quarternion manifold, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 25 (2009), 129-135.
  20. S.I. Goldberg, K. Yano, Polynomial structures on manifolds, Kodai Math Sem Rep. 22 (1970), 199-218.
  21. M.N.I. Khan and U.C. De, Liftings of metallic structures to tangent bundles of order r, AIMS Mathematics 7 (2022), 7888-7897.
  22. M.N.I. Khan and U.C. De, L.S. Velimirovic, Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle, Mathematics 11 (2023), 53.
  23. M.N.I. Khan, Lifts of hypersurfaces with quarter-symmetric semi-metric connection to tangent bundles, Afr. Mat. 25 (2014), 475-482.
  24. M.N.I. Khan, Proposed theorems for lifts of the extended almost complex structures on the complex manifold, Asian-European Journal of Mathematics 15 (2022), 13 pages.
  25. M.N.I. Khan, Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold, Chaos, Solitons & Fractals 146 (2021), 110872.
  26. J. Kappraff, Connections: The geometric bridge between Art and Science, World Scientific, 2001.
  27. M.N.I. Khan, M.A. Choudhary, S.K. Chaubey, Alternative Equations for Horizontal Lifts of the Metallic Structures from Manifold onto Tangent Bundle, Journal of Mathematics 2022 (2022), 8 pages, Article ID 5037620. https://doi.org/10.1155/2022/5037620
  28. A. Magden, N. Cengiz, A.A. Salimov, Horizontal lift of affinor structures and its applications, Applied Mathematics and Computation 156 (2004), 455-461.
  29. T. Omran, A. Sharffuddin, S.I. Husain, Lift of structures on manifold, Publications De L'institut Mathematique (Beograd) (N.S.) 36 (1984), 93-97.
  30. A. Sardar, M.N.I. Khan, U.C. De, η - *-Ricci Solitons and Almost co-Kahler Manifolds, Mathematics 9 (2021), 3200.
  31. V.W. de Spinadel, From the golden mean to chaos, Ed. Nueva Libreria, Buenos Aires, 1998.
  32. M. Tekkoyun, On lifts of paracomplex structures, Turk. J. Math. 30 (2006), 197-210.
  33. K. Yano, S. Ishihara, Almost complex structures induced in tangent bundles, Kodai Math. Sem. Rep. 19 (1967), 1-27.
  34. K. Yano, S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, 1973.