DOI QR코드

DOI QR Code

Multi-resonant three-port DC-DC converter with power decoupling under resonant parameter deviations

  • Xinsheng Zhang (Department of Electrical Engineering, Harbin Institute of Technology) ;
  • Hongchen Liu (Department of Electrical Engineering, Harbin Institute of Technology)
  • Received : 2023.09.27
  • Accepted : 2024.04.18
  • Published : 2024.10.20

Abstract

This article proposes a multi-resonant three-port DC-DC converter (MRTPC) that can achieve power decoupling in the presence of deviations in the parameters of the resonant elements. The MRTPC consists of a four-element resonant tank (FERT), a three-element resonant tank (TERT), and an LC resonant tank (LCRT). Due to the fact that the FERT can be configured with first and third resonant frequencies (RF), it can transmit the energy of the fundamental and third harmonic components. By reasonably setting the RFs of the FERT, TERT, and LCRT, decoupling control of primary and tertiary energy transmission can be achieved. Due to the characteristics of the FERT, TERT and LCRT at different frequencies, decoupling the transmission of the power of the primary and tertiary frequency components can be achieved even when there is a certain deviation in the parameters of the resonant elements of the FERT. This feature can effectively reduce the cost of selecting resonant elements. To improve the efficiency of the MRTPC, an optimized triple-phase-shift modulation strategy (OTPSMS) is proposed to minimize the root mean square value of the resonant current (RMSRC). For the nonlinear problem of minimizing the RMSRC, the KKT condition is used for the optimization solution. Finally, an experimental prototype with a power level of 1 kW is built to verify the theoretical correctness of the MRTPC and its OTPSMS.

Keywords

Acknowledgement

This work was supported by Introduction Plan for High end Foreign Experts G2023179006L and Joint Guidance Project of Heilongjiang Natural Science Foundation under Grant LH2021E067.

References

  1. Chen, H., Xu, D., Deng, X.: Control for power converter of small-scale switched reluctance wind power generator. IEEE Trans. Industr. Electron. 68(4), 3148-3158 (2021) 
  2. Hara, S., Douzono, H., Imamura, M., Yoshioka, T.: Estimation of photovoltaic cell parameters using measurement data of photovoltaic module string currents and voltages. IEEE J. Photovolt. 12(2), 540-545 (2022) 
  3. Li, X., Wang, S.: Energy management and operational control methods for grid battery energy storage systems. CSEE J. Power Energy Syst. 7(5), 1026-1040 (2021) 
  4. Kang, W., Chen, M., Guan, Y., Tang, L., Vasquez, J.C., Guerrero, J.M.: Distributed event-triggered optimal control method for heterogeneous energy storage systems in smart grid. IEEE Trans. Sustain. Energy 13(4), 1944-1956 (2022) 
  5. Hou, N., Zhang, Y., Li, Y., Ding, L., Li, Y.: Topologies and operations of hybrid-type DC-DC converters interfacing DC-current bus and DC-voltage bus. IEEE J. Emerg. Selected Topics Power Electron. 11(4), 4212-4221 (2023) 
  6. Goyal, V.K., Shukla, A.: Isolated DC-DC boost converter for wide input voltage range and wide load range applications. IEEE Trans. Industr. Electron. 68(10), 9527-9539 (2021) 
  7. Wu, F., Wang, K., Luo, S.: Hybrid-three-level current-fed series-resonant isolated DC-DC converter and its optimization modulation strategy. IEEE Trans. Power Electron. 37(1), 196-205 (2022) 
  8. Farhangi, B., Toliyat, H.A.: Modeling and analyzing multiport isolation transformer capacitive components for onboard vehicular power conditioners. IEEE Trans. Industr. Electron. 62(5), 3134-3142 (2015) 
  9. Mou, D., et al.: Reactive power minimization for modular multi-active-bridge converter with whole operating range. IEEE Trans. Power Electron. 38(7), 8011-8015 (2023) 
  10. Keshmiri, N., Mudiyanselage, G.A., Chakkalakkal, S., Kozielski, K., Pietrini, G., Emadi, A.: Design and control methodology of a three-port resonant converter for electric vehicles. IEEE Open J. Ind. Electron. Soc. 3, 650-662 (2022) 
  11. Phattanasak, M., Gavagsaz-Ghoachani, R., Martin, J.-P., Nahid-Mobarakeh, B., Pierfederici, S., Davat, B.: Control of a hybrid energy source comprising a fuel cell and two storage devices using isolated three-port bidirectional DC-DC converters. IEEE Trans. Ind. Appl. 51(1), 491-497 (2015) 
  12. Kougioulis, I., Pal, A., Wheeler, P., Ahmed, M.R.: An isolated multiport DC-DC converter for integrated electric vehicle onboard charger. IEEE J. Emerg. Selected Topics Power Electron. 11(4), 4178-4198 (2023) 
  13. Cai, Y., Gu, C., Li, J., Yang, J., Buticchi, G., Zhang, H.: Dynamic performance enhancement of a triple active bridge with power decoupling-based configurable model predictive control. IEEE Trans. Transp. Electrif. 9(2), 3338-3349 (2023) 
  14. Repecho, V., Olm, J.M., Grino, R., Doria-Cerezo, A., Fossas, E.: Modelling and nonlinear control of a magnetically coupled multiport dc-dc converter for automotive applications. IEEE Access 9, 63345-63355 (2021) 
  15. Ohno, T., Hoshi, N.: Current tracking control of triple active bridge DC/DC converter under varying DC-bus voltage conditions. IEEE Open J. Power Electron. 3, 834-845 (2022) 
  16. Tran, Y.-K., Freijedo, F.D., Dujic, D.: Open-loop power sharing characteristic of a three-port resonant LLC converter. CPSS Trans. Power Electron. Appl. 4(2), 171-179 (2019) 
  17. Wang, Y., Han, F., Yang, L., Xu, R., Liu, R.: A three-port bidirectional multi-element resonant converter with decoupled power fow management for hybrid energy storage systems. IEEE Access 6, 61331-61341 (2018) 
  18. Krishnaswami, H., Mohan, N.: Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports. IEEE Trans. Power Electron. 24(10), 2289-2297 (2009) 
  19. Zhao, S., Chen, Y., Cui, S., Mortimer, B.J., De Doncker, R.W.: Three-port bidirectional operation scheme of modular-multilevel DC-DC converters interconnecting MVDC and LVDC grids. IEEE Trans. Power Electron. 36(7), 7342-7348 (2021) 
  20. Jakka, V.N.S.R., Shukla, A., Demetriades, G.D.: Dual-transformer-based asymmetrical triple-port active bridge (DT-ATAB) isolated DC-DC converter. IEEE Trans. Industr. Electron. 64(6), 4549-4560 (2017) 
  21. Wang, P., Lu, X., Wang, W., Xu, D.: Hardware decoupling and autonomous control of series-resonance-based three-port converters in DC microgrids. IEEE Trans. Ind. Appl. 55(4), 3901-3914 (2019) 
  22. Wu, F., Liu, W., Wang, K., G. wang,: Modeling and closed-loop control of three-port isolated current-fed resonant DC-DC converter. IEEE Trans. Transp. Electrif. 9(1), 1341-1349 (2023) 
  23. Wu, J., Yan, X., Sun, X., Su, X., Du, H., Wang, X.: A series resonant three-port DC-DC converter with decoupling function and magnetic integration. IEEE Trans. Power Electron. 37(12), 14720-14737 (2022) 
  24. Wang, K., Liu, W., Wu, F.: Topology-level power decoupling three-port isolated current-fed resonant DC-DC converter. IEEE Trans. Industr. Electron. 69(5), 4859-4868 (2022) 
  25. Tang, X., Wu, H., Hua, W., Yu, Z., Xing, Y.: Three-port bidirectional series-resonant converter with first-harmonic-synchronized PWM. IEEE J. Emerg. Selected Topics Power Electron. 9(2), 1410-1419 (2021)