DOI QR코드

DOI QR Code

Pseudo-static solution of active earth pressure against relief shelf retaining wall rotating around heel

  • Yun Que (College of Civil Engineering, Fuzhou University) ;
  • Jisong Zhang (College of Civil Engineering, Fuzhou University) ;
  • Chengcheng Long (College of Civil Engineering, Fuzhou University) ;
  • Fuquan Chen (College of Civil Engineering, Fuzhou University)
  • 투고 : 2024.02.25
  • 심사 : 2024.08.26
  • 발행 : 2024.10.10

초록

In practical engineering, the design process for most retaining walls necessitates careful consideration of seismic resistance. The prevention of retaining wall overturning is of paramount importance, especially in cases where the foundation's bearing capacity is limited. To research the seismic active earth pressure (ES) of a relieving retaining wall rotating around base (RB), the shear dissipation graphs across various operating conditions are analyzed by using Optum software, and the earth pressure in each region was derived by the inclined strip method combined with the limit equilibrium method. By observing shear dissipation graphs across various operating conditions, the distribution law of each sliding surface is summarized, and three typical failure modes are obtained. The corresponding calculation model was established. Then the resultant force and its action point were obtained. By comparing the theoretical and numerical solutions with the previous studies, the correctness of the derived formula is proved. The variation of earth pressure distribution and resultant force under seismic acceleration are studied. The unloading plate's position, the wall heel's length, and seismic acceleration will weaken the unloading effect. On the contrary, the length of the unloading plate and the friction angle of the filling will strengthen the unloading effect. The derived formula proposed in this study demonstrates a remarkable level of accuracy under both static and seismic loading conditions. Additionally, it serves as a valuable design reference for the prevention of overturning in relieving retaining walls.

키워드

과제정보

The authors acknowledge the financial support provided by National Natural Science Foundation of China (Grant No. 41772297).

참고문헌

  1. Bahmani Tajani, S., Fathipour, H., Payan, M., Jamshidi Chenari, R. and Senetakis, K. (2022), "Temperature-dependent lateral earth pressures in partially saturated backfills", Eur. J. Environ. Civil Eng., 27(10), 3064-3090. https://doi.org/10.1080/19648189.2022.2125911.
  2. Cao, W.G., Liu, T. and Xu, Z. (2019), "Calculation of passive earth pressure using the simplified principal stress trajectory method on rigid retaining walls", Comput. Geotech., (109), 108-116. https://doi.org/10.1016/j.compgeo.2019.01.021.
  3. Chauhan, V.B. and Dasaka, S.M. (2021), "Active earth pressure on retaining wall with a relief shelf: a novel analytical method", Innov. Infrastruct. Solutions, 7(1). https://doi.org/10.1007/S41062-021-00690-Y.
  4. Chauhan, V.B. and Dasaka, S.M. (2016), "Behaviour of rigid retaining wall with relief shelves with cohesive backfill", Proceedings of the 5th Int Conf Forensic Geot Eng, Bangalore, India.
  5. Choudhury, D. and Singh, S. (2006), "New approach for estimation of static and seismic active earth pressure", Geotech. Geol. Eng., 24, 117-127. https://doi.org/10.1007/s10706-004-2366-x.
  6. Coulomb, C.A. (1776), "Essai sur une application des regles de maximis et minimis a quelques problemes de stratique relatifs a 1'architecture", Memoires de Mathematique et de Physique Presentes a l'Academie Royale des Sciences, Paris(7), 343-382.
  7. Fathipour, H., Tajani, S.B., Payan, M., Chenari, R.J. and Senetakis, K. (2022), "Influence of transient flow during infiltration and isotropic/anisotropic matric suction on the passive/active lateral earth pressures of partially saturated soils". Eng. Geol., 310. https://doi.org/10.1016/j.enggeo.2022.106883.
  8. Fathipour, H., Payan, M., Chenar, R.J. and Senetakis, K. (2021), "Lower bound analysis of modified pseudo-dynamic lateral earth pressures for retaining wall-backfill system with depth-varying damping using fem-second order cone programming", Int. J. Numer. Anal. Method. Geomech., https://doi.org/10.1002/nag.3269.
  9. Fathipour, H., Payan, M., Siahmazgi, A.S. and Veiskarami, M (2021), "Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming", Int. J. Geomech., https://doi.org/21(2).10.1061/(ASCE)GM.1943-5622.0001924.
  10. Greco, V.R. (2009), "Seismic active thrust on cantilever walls with short heel", Soil Dynam. Earthq. Eng., 29(2), 249-252.
  11. Iskander, M., Chen, Z., Omidvar, M., Guzman, I. and Elsherif, O (2013), "Active static and seismic earth pressure for c-psi soils", Soils Found., 53(5), 639-652. https://doi.org/10.1016/j.sandf.2013.08.003.
  12. Johari, A., Javadi, A.A. and Najafi, H. (2016), "A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil", Scientia Iranica, 23(1), 54-65. https://doi.org/10.24200/sci.2016.2097.
  13. Johari, A. and Maroufi, M. (2024), "System reliability analysis of geogrid reinforced retaining wall using random finite element method", Transport. Geotech., 48, 101316-101316. https://doi.org/10.1016/j.trgeo.2024.101316. .
  14. Kerisel, J. and Absi, E. (1990), "Active and passive earth pressure tables", A.A. Balkema, Rotterdam
  15. Klein, G.K. (1964), "Calculation of retaining wells", Moscow:Vysshaya Shkola.(in Russian).
  16. Lim, H., Park, J., Kim, J. and Ko, J. (2023), "Numerical study on stability and deformation of retaining wall according to groundwater drawdown", Geomech. Eng., 33(2), 195-202. https://doi.org/10.12989/gae.2023.33.2.195.
  17. Moon, I.J., Kim, B.I., Yoo, W.K. and Park, Y.S. (2013), "Model tests for measurement of lateral earth pressure on retaining wall with the relieving platform using jumoonjin sand", J. Korea Academia-Ind. Cooperation Soc., 14(11), 55-55. https://doi.org/10.5762/kais.2013.14.11.5923.
  18. Mohamad, S.M., Hamid, S.L., Mohammad, S.M., Payan, M. and Chenari, R.J. (2021), "Active lateral earth pressure of geosynthetic-reinforced retaining walls with inherently anisotropic frictional backfills subjected to strip footingloading", Comput. Geotech., 137. https://doi.org/10.1016/J.COMPGEO.2021.104302.
  19. Nakajima, S., Ozaki, T. and Sanagawa, T. (2021), "1 g Shaking table model tests on seismic active earth pressure acting on retaining wall with cohesive backfill soil", Soils Found., 61(5), 1251-1272. https://doi.org/10.1016/J.SANDF.2021.06.014.
  20. Ouria, A., Toufigh, V., Desai, C., Toufigh, V. and Saadatmanesh, H. (2016), "Finite element analysis of a CFRP reinforced retaining wall", Geomech. Eng., 10(6), 757-774. https://doi.org/10.12989/gae.2016.10.6.757.
  21. Pain, A., Choudhury, D. and Bhattacharyya, K.S. (2015), "Seismic stability of retaining wall-soil sliding interaction using modified pseudo-dynamic method", Geotech. Lett., 5(1), 56-61. https://doi.org/10.1680/geolett.14.00116.
  22. Peng, J. (2022), "Modified Horizontal Slice Element Method for Active Earth Pressure Against Rigid Retaining Walls". Soil Mech. Found. Eng., 59(5), 484-491. https://doi.org/10.1007/S11204-022-09840-5.
  23. Peng, M.X. and Chen, J. (2013), "Coulomb's solution to seismic passive earth pressure on retaining walls", Can. Geotech. J., 50(10), 1100-1107. https://doi.org/10.1139/cgj-2012-0392.
  24. Que, Y., Gui, X.F. and Chen, F.Q. (2022), "Active earth pressure against cantilever retaining walls with the long relief shelf rotating about the nottom", Int. J. Geomech., 22(10). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002524.
  25. Srikar, G. and Mittal, S. (2021), "Modified pseudo-dynamic analysis of rigid gravity retaining wall with cohesion-less backfill and uniform surcharge", Geomech. Eng., 26(5), 453-464. https://doi.org/10.12989/gae.2021.26.5.453.
  26. Terzaghi, K. (1943), "Theoretical soil mechanics", John Wiley and Sons, New York.
  27. Thiyyakkandi, S., Shankar, P., Neeraj, C.R. and Lukose, A. (2021), "Active earth pressure on retaining walls with sloping backfill considering arching effect under rotation about base", Innov. Infrastruct Solution, 7(1). https://doi.org/10.1007/S41062-021-00724-5.
  28. Wang, Z.Y., Liu, X.X., Wang, W.W., Tao, Z.Y. and Li, S. (2022), "Inclined layer method-based theoretical calculation of active earth pressure of a finite-width soil for a rotating-base Retaining wall", Sustainability, 14(15), 9772-9772. https://doi.org/10.3390/SU14159772.
  29. Xu, L., Zhang, Y.B., Chen, F.Q. and Lin, Y.J. (2021), "Active Earth Pressure of Narrow Backfill on Inverted T-Type Retaining Walls under Translation Mode", Int. J. Geomech., 21(11). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002176.
  30. Yang, K.H. and Liu, C.N. (2007), "Finite element analysis of earth pressures for narrow retaining walls", J. Geoeng., 2(2), 43-52. https://doi.org/10.6310/jog.2007.2(2).1.
  31. Zhang, Y.B., Chen, F.Q., Lin, Y.J. and Chen, H.B. (2022), "Active earth pressure of narrow backfill against inverted T-type retaining walls rotating about the heel", KSCE J. Civil Eng., 1-17. https://doi.org/10.1007/S12205-022-1294-8.