DOI QR코드

DOI QR Code

Evaluation of artificial ground freezing behavior considering the effect of pore water salinity

  • Gyu-Hyun Go (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Dinh-Viet Le (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Jangguen Lee (Department of Future & Smart Construction Research, KICT)
  • 투고 : 2024.01.22
  • 심사 : 2024.09.13
  • 발행 : 2024.10.10

초록

There is growing interest in introducing artificial ground freezing (AGF) as a method to temporarily secure unstable ground during tunnel construction. In order to efficiently operate an artificial ground freezing system, basic modeling research is needed on the changes in freezing behavior according to various soil environmental conditions as well as design conditions. In this study, a thermal-hydraulic coupled analysis was performed to simulate the artificial ground freezing process of ground containing salt water. The effect of major variables, including pore water salinity, on artificial ground freezing test performance was investigated. Additionally, an artificial neural network-based prediction model was proposed to estimate the time required to achieve the desired arch thickness. The artificial neural network model demonstrated reliable accuracy (R2 = 0.9942) in predicting the time it would take to reach the desired arch thickness. Among the major input variables considered, pore water salinity appeared to be the most influential input variable, and initial soil temperature showed the least importance.

키워드

과제정보

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1C1C1006507).

참고문헌

  1. Alzoubi, M.A., Xu, M., Hassani, F.P., Poncet, S. and Sasmito, A.P. (2020), "Artificial ground freezing: A review of thermal and hydraulic aspects", Tunn. Undergr. Sp. Tech., 104, 103534-1-18. https://doi.org/10.1016/j.tust.2020.103534.
  2. Andersland, O.B. and Ladanyi, B. (2004), Frozen ground engineering (Second edition), John & Wiley Sons.
  3. Chang, D.K. and Lacy, H.S. (2008), "Artificial ground freezing in geotechnical engineering", Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering.
  4. Cicchetti L. (2018), Thermo-hydro-mechanical simulations of artificial ground freezing, MSc thesis, Departments of Civil and Environmental Engineering at NTNU and DTU.
  5. Comsol (2024), Introduction to Comsol Multiphysics, Comsol, Inc., USA.
  6. Coussy O. (2010), Mechanics and physics of porous solids. John Wiley and Sons..
  7. Coussy O. (2004), Poromechanics. John Wiley & Sons: Chichester, UK.
  8. Coussy, O. and Monteiro, P. (2007), "Unsaturated poroelasticity for crystallization in pores", Com. Geotech., 34(4), 279-290. https://doi.org/10.1016/j.compgeo.2007.02.007.
  9. Crippa, C. and Manassero, V. (2006), "Artificial ground freezing at Sophiaspoortunnel (The Netherlands). Freezing parameters: data acquisition and processing", Proceeding of the GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Civil Engineering in the Arctic Offshore, Atlanata, 1-6. https://doi.org/10.1061/40803(187)254.
  10. Garson, G.D. (1991), Interpreting Neural Network Connection Weights. AI Expert.
  11. Han, L., Ye, G., Li, Y., Xia, X. and Wang, J. (2016), "In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method", Can. Geotech. J., 53, 530-539. https://doi.org/10.1139/cgj-2014-0486.
  12. Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L.C. and Van Genuchten, M.T. (2004), "Water flow and heat transport in frozen soil", Vadose Zone J., 3, 693-704. https://doi.org/10.2113/3.2.693.
  13. Holden, J.T. (1997), "Improved thermal computations for artificially frozen shaft excavations", J. Geotech. Geoenviron. Eng., 123(8), 696-701. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(696).
  14. Hu, R.; Liu, Q. and Xing, Y. (2018), "Case study of heat transfer during artificial ground freezing with groundwater flow", Water, 10, 1322. https://doi.org/10.3390/w10101322.
  15. Huang, S., Guo, Y., Liu, Y. Ke, L., Liu, G. and Chen, C. (2018), "Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing", Appl. Therm. Eng., 135, 435-445. https://doi.org/10.1016/j.applthermaleng.2018.02.090.
  16. Jin, H., Go, G.H., Ryu, B.H. and Lee, J. (2021), "Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://doi.org/10.12989/gae.2021.27.5.433.
  17. Kim, H.W. and Go, G.H. (2023), "Measurement and verification of unfrozen water retention curve of frozen sandy soil based on pore Water Salinity" J. the Kor. Geotech. Soci., 39(11), 53-62. https://doi.org/10.7843/kgs.2023.39.11.53
  18. Konrad, J.M., (1999), "Frost susceptibility related to soil index properties", Can. Geotech. J., 36, 403-417. https://doi.org/10.1139/t99-008.
  19. Kurylyk, B.L., McKenzie, J.M., MacQuarrie, K.T. and Voss, C.I. (2014), "Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection", Adv. Water Res., 70, 172-184. https://doi.org/10.1016/j.advwatres.2014.05.005.
  20. Li, C.C., Kristjansson, G. and Hoien, A.H. (2016), "Critical embedment length and bond strength of fully encapsulated rebar rockbolts", Tunn. Undergr. Sp. Tech., 59, 16-23. https://doi.org/10.1016/j.tust.2016.06.007.
  21. Li, Z., Chen, J., Sugimoto, M. and Ge, H. (2019), "Numerical simulation model of artificial ground freezing for tunneling under seepage flow conditions", Tunn. Undergr. Sp. Tech., 92, 103035. https://doi.org/10.1016/j.tust.2019.103035
  22. Lunardini, V.J. (1998), "Effect of convective heat transfer on thawing of frozen soil", (Eds., Lewkowicz, A.G. and Allard, M.) Proceedings of the seventh international conference on permafrost, Canada: Yellowknife.
  23. Marwan, A., Zhou, M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Com. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004.
  24. McKay, M.D., Beckman, R.J. and Conover, W.J. (2000), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 42(1), 55-61. https://doi.org/10.2307/1268522.
  25. McKenzie, J.M., Voss, C.I. and Siegel, D.I. (2007), "Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs", Adv. Water Resour., 30(4), 966-983. https://doi.org/10.1016/j.advwatres.2006.08.008.
  26. Michalowski, R.L. and Zhu, M. (2006), "Frost heave modelling using porosity rate function", Int. J. Numer. Anal. Method. Geomech., 30(8), 703-722. https://doi.org/10.1002/nag.497.
  27. Naithani, A.K., Jain, P., Singh, L.G. and Rawat, D.S. (2022), "Engineering geological characteristics of the underground surge pool cavern: A case study, India", Int. J. Geo-Eng., 13(1), 7. https://doi.org/10.1186/s40703-022-00172-9.
  28. Nguyen, D. and Widrow, B. (1990), "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, USA.
  29. Oh, M., Lee, D., Son, Y.J., Lee, I.M. and Choi, H. (2016), "Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test", J. Kor. Tunn. Undergr, Sp. Assoc., 18(5), 401-412. http://dx.doi.org/10.9711/KTAJ.2016.18.5.401.
  30. Osgoui, R.R. and unal, E. (2009), "An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI)", Eng. Geol., 107(3-4), 154-166. https://doi.org/10.1016/j.enggeo.2009.05.003.
  31. Papakonstantinou, S., Anagnostou, G. and Pimentel, E. (2013), "Evaluation of ground freezing data from the Naples subway", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(3), 280-298.
  32. Pimentel, E., Papakonstantinou, S. and Anagnostou, G. (2012), "Numerical interpretation of temperature distributions from three ground applications in urban tunnelling", Tunn. Undergr. Sp. Tech., 28, 57-69. https://doi.org/10.1016/j.tust.2011.09.005.
  33. Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn. H.P. (1989), "Design and analysis of computer experiments", Statist. Sci. 4(4), 409-423.
  34. Schmall, P. and Dawson, A. (2017), "Ground-freezing experience on the east side access Northern Boulevard crossing, New York", Proceedings of the Institution of Civil Engineers - Ground Improvement , 170(3), 159-172
  35. Shen, Y., Wang, Y., Zhao, X., Yang, G., Jia, H. and Rong, T. (2018), "The influence of temperature and moisture content on sandstone thermal conductivity from a case using the artificial ground freezing (AGF) method", Cold Reg. Sci. Technol., 155, 149-160. https://doi.org/10.1016/j.coldregions.2018.08.004.
  36. Shin, H., Kim, J. and Lee, J (2018), "Effect of groundwater flow on ice-wall integrity", J. Korean Geotech. Soc., 34(11), 43-55. https://doi.org/10.7843/kgs.2018.34.11.43.
  37. Sres, A. (2009), Theoretische und experimentelle Untersuchungen zur Kunstlichen Bodenvereisung im Stromenden Grundwasser, Ph.D. thesis, ETH Zurich.
  38. Tacim, G., Posluk, E. and Gokceoglu, C. (2023), "Importance of grouting for tunneling in karstic and complex environment (a case study from Turkiye)", Int. J. Geo-Eng., 14(1), 6. https://doi.org/10.1186/s40703-023-00183-0
  39. Tan X.J., Chen, W.Z., Tian, H.M. and Cao, J.J. (2011), "Water flow and heat transport including ice/water phase change in porous media: numerical simulation and application", Cold Reg. Sci. Technol., 68(12), 74-84. https://doi.org/10.1016/j.coldregions.2011.04.004.
  40. Tounsi, H., Rouabhi, A. and Jahangir, E. (2020), "Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid", Com. Geotech., 119, 103382. https://doi.org/10.1016/j.compgeo.2019.103382.
  41. Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016), "Modeling heat and mass transfer during ground freezing subjected to high seepage velocities", Com. Geotech, 73, 1-15. https://doi.org/10.1016/j.compgeo.2015.11.014
  42. Wang, H., Li, S., Wang, Q., Wang, D., Li, W., Liu, P., Li, X. and Chen, Y. (2019a), "Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel", Geomech. Eng., 19(6), 485-498. https://doi.org/10.12989/gae.2019.19.6.485.
  43. Wang, B., Rong, C.X., Lin, J., Cheng, H. and Cai, H.B. (2019b), "Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater", Adv. Mater. Sci. Eng., https://doi.org/10.1155/2019/1670820.
  44. Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.E. (2015), "Solute and water effects on soil freezing characteristics based on laboratory experiments", Cold Reg. Sci. Technol., 115, 22-29. https://doi.org/10.1016/j.coldregions.2015.03.007.
  45. Yamamoto, Y. and Springman, S.M., (2014), "Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0℃", Can. Geotech. J., 51, 1178-1195. https://doi.org/10.1139/cgj-2013-0257.
  46. Yoon, S., Le, D.V. and Go, G.H. (2021) "Artificial neural network-based model for prediction of frost heave behavior of silty soil specimen", Appl. Sci., 11, 10834. https://doi.org/10.3390/app112210834.
  47. Zhou, J. and Tang, Y. (2018), "Experimental inference on dualporosity aggravation of soft clay after freeze-thaw by fractal and probability analysis", Cold Reg. Sci. Technol., 153, 181-196. https://doi.org/10.1016/j.coldregions.2018.06.001.
  48. Zhou, M.M. and Meschke, G. (2013), "A three-phase thermo-hydro-mechanical finite element model for freezing soils" Int. J. Numer. Anal. Method. Geomech., 37(18), 3173-3193. https://doi.org/10.1002/nag.2184.
  49. Zhou X., Liu, X., Xiao, Y., Liang, N., Yang, Y., Han, Y. and Yang, Z., (2023), "Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel", Geomech. Eng., 35(4), 395-409. https://doi.org/10.12989/gae.2023.35.4.395.