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In this investigation, a novel design for a well-plate structure was created to optimize antigen-antibody reactions. The
main objective during the development process was to enhance the internal structure of the well plate and increase the
surface area. To improve efficiency, the newly designed well-plate was conical in shape and featured internal protrusions,
or fins, which increased the surface area per unit volume by 1.45 times compared to standard plates. The performance of

the newly developed well plate was assessed using a sandwich CLEIA system, which demonstrated a detection limit
approximately 2.5 times better than that of commercial products. Additionally, the coefficient of variation (CV%) was
superior to that of commercial products, with inter-assay CV(%) < 11 and intra-assay CV(%) <9, compared with inter-
assay CV(%) < 15 and intra-assay CV(%) < 10 for commercial products. Furthermore, the newly designed well plate

demonstrated higher reaction efficiency, even with smaller sample volumes (25~50 pL) compared to the 50~100 pL
typically required by commercial well plates. The incorporation of fine patterns increases the number of active sites
available for interaction with the samples, thereby significantly enhancing the reaction sensitivity and overall performance.
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Fig. 1. Design tools were utilized to create fins for the well plate
drawing. Subsequently, the surface area was calculated using
SolidWorks software. The outcome was a well plate drawing with
a greater surface area than that of commercial products.
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Fig. 2. The evaluation of the surface area of the well plate using
SolidWorks demonstrated that the developed plate possessed a

surface area of 60 mm?, which is similar to the commercial pro-
duct's 64 mm’. There was no notable disparity between these
values. The commercial product utilized a sample volume of 100 L,
while the developed plate required only 50 pL. Despite having a
smaller surface area, the performance of the developed plate was
comparable to that of the commercial product, even with a lower
sample volume.
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Fig. 3. The analysis of the signal in relation to the concentration of the capture antlbody through direct CLEIA revealed that the newly
developed 5-wing well plate had a significantly increased surface area of 3 mn?’, attributed to the addition of fins. Additionally, despite
having a smaller volume, the immobilization efficiency was found to be 1.25 tlmes higher than that of commercial products.
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Fig. 4. The performance of the developed 5-wing well plate was
evaluated through Sandwich CLEIA analysis. The results showed
that the signal-to-noise (S/N) ratio of the developed 5-wing well
plate was 1.8, indicating a significantly higher specific signal than
the background noise. This advantage is attributed to the increased
surface area owing to the addition of fins inside the plate, as well
as the reduction in background noise.
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Fig. 6. The performance analysis of three well plate types developed
using Sandwich CLEIA revealed that the tapered well plate and
the 5-wing well plate exhibited equivalent or superior performance
compared to commercial products. Additionally, the 9-wing well
plate showed a sensitivity more than twice that of commercial pro-
ducts. The added wings not only increased the surface area, but also
enhanced the interaction with the samples, allowing for the loading
of more samples onto the plate.
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Fig. 5. For the 9-wing well plate, which includes a total of nine fins, the surface area increased by approximately 0.68 times compared to
that of commercial products. Direct CLEIA analysis confirmed that the immobilization efficiency improved, with the sensitivity increasing

by approximately 0.54 times.
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Fig. 7. The signal-to-noise (S/N) ratio of the 9-wing well plate was
evaluated using a sandwich CLEIA assay. The results indicated
that the S/N ratio was 4.1, demonstrating a significantly higher
performance compared to a commercial version of well plate.
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Table 1. Comparison of analytical performances between commercial and MD well plate
Performance data Third party well plate MD well plate
LOD-LOB+1.645 (blank SD) No. 1, 2, 3 average LOD =91 pg/mL No. 1, 2, 3 average LOD = 37.6 pg/mL
Analytical sensitivity 91 pg/mL 38 pg/mL
Measuring range 100~12,000 pg/mL 40~12,000 pg/mL
Reaction volume 100 L 50 uL
Reaction time (based on 4 levels) 30 min 30 min
o Inter-assay CV Intra-assay CV Inter-assay CV Intra-assay CV
Reproducibility
<15% <10% <11% <9%
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List of abbreviations
ELISA: Enzyme-Linked Immunosorbent Assay

CLEIA: Chemiluminescence enzyme immunoassay
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