과제정보
The research described in this paper was financially supported by the National Science Foundation of China (Grant Nos. 52068049 and 51908266), the Science Fund for Distinguished Young Scholars of Gansu Province (No. 21JR7RA267), and Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
참고문헌
- Amenabar, I., Mendikute, A., Lopez-Arraiza, A., Lizaranzu, M. and Aurrekoetxea, J. (2011), "Comparison and analysis of nondestructive testing techniques suitable for delamination inspection in wind turbine blades", Compos. B. Eng., 42(5), 1298-1305. https://doi.org/10.1016/j.compositesb.2011.01.025
- Arjovsky, M. and Bottou, L. (2017), "Towards principled methods for training generative adversarial networks", Proc. ICLR, 1-17. https://doi.org/10.48550/arXiv.1701.04862
- Beganovic, N. and Soffker, D. (2016), "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results", Renew. Sustain. Energy Rev., 64, 68-83. https://doi.org/10.1016/j.rser.2016.05.083
- Chu, M., Xie, Y., Mayer, J., Leal-Taixe, L. and Thuerey, N. (2020), "Learning temporal coherence via self-supervision for GAN-based video generation", ACM Trans. Graph., 39(4), 75:1-75:13. https://doi.org/10.1145/3386569.3392457
- Du, Y., Zhou, S., Jing, X., Peng, Y., Wu, H. and Kwok, N. (2020), "Damage detection techniques for wind turbine blades: A review", Mech. Syst. Signal Process., 141, 106445. https://doi.org/10.1016/j.ymssp.2019.106445
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial nets", Proc. NIPS, 27, 2672-2680. https://doi.org/10.12989/sss.2023.31.5.469
- Guo, J., Liu, C., Cao, J. and Jiang, D. (2021), "Damage identification of wind turbine blades with deep convolutional neural networks", Renew. Energy, 174, 122-133. https://doi.org/10.1016/j.renene.2021.04.040
- Hernandez-Estrada, E., Lastres-Danguillecourt, O., Robles-Ocampo, J.B., Lopez-Lopez, A., Sevilla-Camacho, P.Y., Perez-Sarinana, B.Y. and Dorrego-Portela, J.R. (2021), "Considerations for the structural analysis and design of wind turbine towers: A review", Renew. Sust. Energ. Rev., 137, 110447. https://doi.org/10.1016/j.rser.2020.110447
- Hoskere, V., Narazaki, Y. and Spencer Jr, B.F. (2022), "Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds", Sensors, 22(2), 532. https://doi.org/10.3390/s22020532
- Kaewniam, P., Cao, M., Alkayem, N.F., Li, D. and Manoach, E. (2022), "Recent advances in damage detection of wind turbine blades: A state-of-the-art review", Renew. Sust. Energ. Rev., 167, 112723. https://doi.org/10.1016/j.rser.2022.112723
- Karras, T., Laine, S. and Aila, T. (2019), "A style-based generator architecture for generative adversarial networks", In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, June.
- Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T. (2020), "Analyzing and improving the image quality of stylegan", In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, June.
- Karras, T., Aittala, M., Laine, S., Harkonen E., Hellsten, J., Lehtinen, J. and Aila. T. (2021), "Alias-free generative adversarial networks", Adv. Neural Inf. Process. Syst., 34, 852-863.
- Liu, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Lai, B. and Hao, Y. (2021), "Paddleseg: A high-efficient development toolkit for image segmentation", arXiv preprint arXiv:2101.06175 [cs.LG]. https://doi.org/10.48550/arXiv.2101.06175
- Moreno, S., Pena, M., Toledo, A., Trevino, R. and Ponce, H. (2018), "A new vision-based method using deep learning for damage inspection in wind turbine blades", In: The 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, September.
- Narazaki, Y., Hoskere, V., Eick, B.A., Smith, M.D. and Spencer, B.F. (2019), "Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models", Smart Struct. Syst., Int. J., 24(6), 709-721. https://doi.org/10.12989/sss.2019.24.6.709
- Oliveira, G., Magalhaes, F., Cunha, A. and Caetano, E. (2018), "Continuous dynamic monitoring of an onshore wind turbine", Eng. Struct., 164, 22-39. https://doi.org/10.1016/j.engstruct.2018.02.030
- Ozbek, M., Meng, F. and Rixen, D.J. (2013), "Challenges in testing and monitoring the in-operation vibration characteristics of wind turbines", Mech. Syst. Signal Process, 41(1-2), 649-666. https://doi.org/10.1016/j.ymssp.2013.07.023
- Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A.A. and Zhang, R. (2017), "Swapping autoencoder for deep image manipulation", Adv. Neural. Inf. Process. Syst., 33, 7198-7211.
- Park, T., Liu, M.Y., Wang, T.C. and Zhu, J.Y. (2019), "Semantic image synthesis with spatially-adaptive normalization", In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, June.
- Radford, A., Metz, L. and Chintala, S. (2016), "Unsupervised representation learning with deep convolutional generative adversarial networks", arXiv:1511.06434 [cs.LG]. https://doi.org/10.48550/arXiv.1511.06434
- Ruiz, M., Mujica, L.E., Alferez, S., Acho, L., Tutiven, L., Vidal, Y., Rodellar, J. and Pozo, F. (2018), "Wind turbine fault detection and classification by means of image texture analysis", Mech. Syst. Signal Process, 107, 149-167. https://doi.org/10.1016/j.ymssp.2017.12.035
- Sarkar, D. and Gunturi, S.K. (2021), "Wind turbine blade structural state evaluation by hybrid object detector relying on deep learning models", J. Amb. Intel. Hum. Comp., 12, 8535-8548. https://doi.org/10.1007/s12652-020-02587-7
- Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monit., 26(3), e2321. https://doi.org/10.1002/stc.2321
- Sun, S., Wang, T., Yang, H. and Chu, F. (2022), "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function", Renew. Energy, 181, 59-70. https://doi.org/10.1016/j.renene.2021.09.024
- Wang, L. and Zhang, Z. (2017), "Automatic detection of wind turbine blade surface cracks based on UAV-taken images", IEEE Trans. Ind. Electron, 64(9), 7293-7303. https://doi.org/10.1109/TIE.2017.2682037
- Wang, L., Zhang, Z. and Luo, X. (2019), "A two-stage data-driven approach for image-based wind turbine blade crack inspections", IEEE ASME Trans. Mechatron, 24(3), 1271-1281. https://doi.org/10.1109/TMECH.2019.2908233
- Xu, D., Wen, C. and Liu, J. (2019), "Wind turbine blade surface inspection based on deep learning and UAV-taken images", J. Renew Sustain. Energy, 11(5), 053305. https://doi.org/10.1063/1.5113532
- Yang, B. and Sun, D. (2013), "Testing, inspecting and monitoring technologies for wind turbine blades: A survey", Renew. Sustain. Energy Rev., 22, 515-526. https://doi.org/10.1016/j.rser.2012.12.056
- Yang, X., Zhang, Y., Lv, W. and Wang, D. (2021), "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier", Renew. Energy, 163, 386-397. https://doi.org/10.1016/j.renene.2020.08.125
- Yu, Y., Cao, H., Yan, X., Wang, T. and Ge, S.S. (2020), "Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor", Neurocomputing, 367, 1-9. https://doi.org/10.1016/j.neucom.2019.09.071
- Zhao, W.H., Li, W.R., Yang, M.H., Hong, Na. and Du, Y.F. (2023), "Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model", Smart Struct. Syst., Int. J., 31(5), 469-483. https://doi.org/10.12989/sss.2023.31.5.469
- Zhou, H.F., Zheng, J.F., Xie, Z.L., Lu, L.J., Ni, Y.Q. and Ko, J.M. (2017), "Temperature effects on vision measurement system in long-term continuous monitoring of displacement", Renew. Energy, 114, 968-983. https://doi.org/10.1016/j.renene.2017.07.104
- Zhu, X., Hang, X., Gao, X., Yang, X., Xu, Z., Wang, Y. and Liu, H. (2022), "Research on crack detection method of wind turbine blade based on a deep learning method", Appl. Energy, 328, 120241. https://doi.org/10.1016/j.apenergy.2022.120241