DOI QR코드

DOI QR Code

Design and fabrication of cost effective semi-active vehicular suspension system and testing on full scale quarter car suspension rig

  • N.P. Puneet (Department of Automobile Engineering, Dayananda Sagar College of Engineering) ;
  • Radhe Shyam Tak Saini (Department of Mechanical Engineering, National Institute of Technology Karnataka) ;
  • Hemantha Kumar (Department of Mechanical Engineering, National Institute of Technology Karnataka)
  • 투고 : 2023.11.24
  • 심사 : 2024.09.24
  • 발행 : 2024.08.25

초록

Smart materials, such as magnetorheological (MR) fluid, have received considerable research attention in recent years due to their unique capabilities. MR fluid, which possesses a magnetic field controllable viscosity, has been extensively studied for vehicular applications with the aim of synthesizing optimal MR fluids, designing optimal MR dampers, and developing control strategies. However, a comprehensive study that primarily focuses on developing a cost-effective semi-active suspension system for a commercial vehicle in a developing nation is still lacking. This study addresses this gap by synthesizing an in-house MR fluid and studying its rheological properties. Subsequently, a novel single-sensor-based controller is developed and closed-loop simulations are conducted on a quarter-car semi-active model. Finally, the overall semi-active quarter-car suspension system is experimentally tested using a suspension test rig. The performance of the proposed system in terms of ride comfort and road holding is evaluated and is compared with simple control strategies. The dynamic range of the developed semi-active MR damper is found to be around 2.3, indicating a significant MR effect. The results suggest an intermediate response using the proposed acceleration-driven controller (ADV) at lower frequencies and similar performance to that of the skyhook controller at higher frequencies. The cost-effective methodology proposed in this study is effective and can be adapted for other semi-active engineering applications.

키워드

과제정보

This work received the funding support by the Ministry of Human Resource Development and Ministry of Road Transport and Highways, Govt. of India under IMPRINT project titled with "Development of Cost-Effective Magneto-Rheological (MR) Fluid Damper in Two wheelers and Four Wheelers Automobile to Improve Ride Comfort and Stability" [No. IMPRINT/2016/7330].

참고문헌

  1. Acharya, S., Saini, R.S.T. and Kumar, H. (2019), "Determination of optimal magnetorheological fluid particle loading and size for shear mode monotube damper", J. Brazilian. Soc. Mech. Sci. Eng., 41, 1-15. https://doi.org/10.1007/s40430-019-1895-4
  2. Acharya, S., Saini, T.R.S., Sundaram, V. and Kumar, H. (2021), "Selection of optimal composition of MR fluid for a brake designed using MOGA optimization coupled with magnetic FEA analysis", J. Intell. Mater. Syst. Struct., 32(16), 1831-1854. https://doi.org/10.1177/1045389X20977905
  3. Akutain, X.C., Vinolas, J., Savall, J. and Castro, M. (2007), "Comparing the performance and limitations of semi-active suspensions", Int. J. Veh. Syst. Model. Test., 2, 296. https://doi.org/10.1504/IJVSMT.2007.016239
  4. Allien, J.V., Kumar, H. and Desai, V. (2020), "Semi-active vibration control of MRF core PMC cantilever sandwich beams: Experimental study", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234, 574-585. https://doi.org/10.1177/1464420720903078
  5. Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020a), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203
  6. Amir, S., Arshid, E. and Maraghi, Z.K. (2020b), "Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., Int. J., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581
  7. Audi Magnetic Ride, Accessed 6 April 2023; https://www.audi-technology-portal.de/en/chassis/suspension-control-systems/audi-magnetic-ride_en
  8. Babawuro, A.Y., Tahir, N.M., Muhammed, M. and Sambo, A.U. (2020), "Optimized state feedback control of quarter car active suspension system based on LMI algorithm", Journal of Physics: Conference Series. IOP Publishing, 1502(1), 012019. https://doi.org/10.1088/1742-6596/1502/1/012019
  9. Batterbee, D.C. and Sims, N.D. (2005), "Vibration isolation with smart fluid dampers: a benchmarking study", Smart Struct. Syst., Int. J., 1(3), 235-256. https://doi.org/10.12989/sss.2005.1.3.235
  10. Cadillac Magnetic Ride, Accessed 6 April 2023; https://www.schepelcadillac.com/cadillac-magnetic-ride-control-portage-in.html
  11. Desai, R.M., Jamadar, M.E.H., Kumar, H., Joladarashi, S. and Raja Sekaran, S.C. (2019), "Design and experimental characterization of a twin-tube MR damper for a passenger van", J. Brazilian. Soc. Mech. Sci. Eng., 41, 1-21. https://doi.org/10.1007/s40430-019-1833-5
  12. Devikiran, P., Puneet, N.P., Hegale, A. and Kumar, H. (2022), "Design and development of MR damper for two wheeler application and Kwok model parameters tuning for designed damper", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236, 1595-1606. https://doi.org/10.1177/09544070211036317
  13. Ferrari Magnaride SCM-E Suspension, Accessed 6 April 2023; https://www.ferrari.com/en-EN/auto/gtc4lussot
  14. Florean-Aquino, K.H., Arias-Montiel, M., Linares-Flores, J., Mendoza-Larios, J.G. and Cabrera-Amado, A. (2021), "Modern semi-active control schemes for a suspension with MR actuator for vibration attenuation", Actuators, 10(2), 22. https://doi.org/10.3390/act10020022
  15. Gavin, H.P., Hanson, R.D. and Filisko, F.E. (1996), "Electrorheological dampers, part I: analysis and design", J. Appl. Mech., 63(3), 669-675. https://doi.org/10.1115/1.2823348
  16. Gavin, H., Hoagg, J. and Dobossy, M. (2001), "Optimal Design of Magnetorheological Dampers", Proc. US-Japan. Work. Smart. Struct. Improv. Seism. Perform. Urban. Reg., 225-236.
  17. Ghaffari, A., Hashemabadi, S.H. and Ashtiani, M. (2015), "A review on the simulation and modeling of magnetorheological fluids", J. Intell. Mater. Syst. Struct., 26, 881-904. https://doi.org/10.1177/1045389X14546650
  18. Jamadar, M.E.H, Desai, R.M., Saini, R.S.T., Kumar, H. and Joladarashi, S. (2021), "Dynamic analysis of a quarter car model with semi-active seat suspension using a novel model for magneto-rheological (MR) damper", J. Vib. Eng. Technol., 9, 161-176. https://doi.org/10.1007/s42417-020-00218-1
  19. Jolly, M.R., Bender, J.W. and Carlson, J.D. (1999), "Properties and Applications of Commercial Magnetorheological Fluids", J. Intell. Mater. Syst. Struct., 10, 5-13. https://doi.org/10.1177/1045389X9901000102
  20. Kargar, J., Arani, A.G., Arshid, E. and Rahaghi, M.I. (2021), "Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation", Struct. Eng. Mech., Int. J., 78(5), 557-572. https://doi.org/10.12989/sem.2021.78.5.557
  21. Kumbhar, B.K., Patil, S.R. and Sawant, S.M. (2015), "Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application", Eng. Sci. Technol. Int. J., 18, 432-438. https://doi.org/10.1016/j.jestch.2015.03.002
  22. Madhavrao, Desai, R., Acharya, S., Jamadar M.E.H., Kumar, H., Joladarashi, S. and Sekaran, S.R. (2020), "Synthesis of magnetorheological fluid and its application in a twin-tube valve mode automotive damper", Proc. Inst. Mech. Eng. Part. L. J. Mater. Des. Appl., 234(7), 1001-1016. https://doi.org/10.1177/1464420720925497
  23. Maiti, D.K., Shyju, P.P. and Vijayaraju, K. (2006), "Vibration control of mechanical systems using semi-active MR-damper", Smart Struct. Syst., Int. J., 2(1), 61-80. https://dx.doi.org/10.12989/sss.2006.2.1.061
  24. Muhammad, A., Yao, X. and Deng, Z. (2006), "Review of magnetorheological (MR) fluids and its applications in vibration control", J. Mar. Sci. Appl., 5, 17-29. https://doi.org/10.1007/s11804-006-0010-2
  25. Nguyen, Q.H. and Choi, S.B. (2009), "Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range", Smart Mater. Struct., 18(1), 015013. https://doi.org/10.1088/0964-1726/18/1/015013
  26. Nguyen, T., Lechner, B. and Wong, Y.D. (2019), "Response-based methods to measure road surface irregularity: a state-of-the-art review", Eur. Transp. Res. Rev., 11, 43. https://doi.org/10.1186/s12544-019-0380-6
  27. Phillips, R.W. (1969), "Engineering applications of fluids with a variable yield stress", Ph.D. Dissertation; University of California, Berkeley, CA, USA.
  28. Praznowski, K., Mamala, J., Smieja, M. and Kupina, M. (2020), "Assessment of the road surface condition with longitudinal acceleration signal of the car body", Sensors, 20, 5987. https://doi.org/10.3390/s20215987.
  29. Puneet, N.P., Devikiran, P., Kumar, H. and Gangadharan, K.V. (2022), "Performance evaluation of magneto-rheological damper through characterization testing, modeling and its implementation in quarter car", J. Vib. Eng. Technol., 10, 967-983. https://doi.org/10.1007/s42417-021-00422-7
  30. Rabinow, J. (1948), "The Magnetic Fluid Clutch", Trans. Am. Inst. Electr. Eng., 67, 1308-1315. https://doi.org/10.1109/T-AIEE.1948.5059821
  31. Saini, R.S.T., Kumar, H., Chandramohan, S. and Srinivasan, S. (2019), "Design of twin-rod flow mode magneto rheological damper for prosthetic knee application", In: AIP Conference Proceedings, 2200, 020045. https://doi.org/10.1063/1.5141215
  32. Savaresi, S., Poussot-Vassal, C., Spelta, C., Sename, O. and Dugard, L. (2010), Semi-Active Suspension Control Design for Vehicles, Elsevier. https://doi.org/10.1016/B978-0-08-096678-6.00023-7
  33. Vicente, J. de. (2013), "Magnetorheology : a review", e-rheo-iba, 1, pp. 1-18.
  34. Wahid, S.A., Ismail, I., Aid, S. and Rahim, M.S.A. (2016), "Magneto-rheological defects and failures: A review", In: IOP Conference Series: Materials Science and Engineering, 114(1), 012101. https://doi.org/10.1088/1757-899X/114/1/012101
  35. Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: Modeling and dynamic performance considerations", Eng. Struct., 24, 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
  36. Yu, M., Liao, C.R., Chen, W.M. and Huang, S.L. (2006), "Study on MR semi-active suspension system and its road testing", J. Intell. Mater. Syst. Struct., 17, 801-806. https://doi.org/10.1177/1045389X06057534
  37. Zhang, J. and Agrawal, A.K. (2015), "An innovative hardware emulated simple passive semi-active controller for vibration control of MR damper", Smart Struct. Syst., Int. J., 15(3), 831-846. https://dx.doi.org/10.12989/sss.2015.15.3.831
  38. Zhao, B., Nagayama, T. and Xue, K. (2019), "Road profile estimation, and its numerical and experimental validation, by smartphone measurement of the dynamic responses of an ordinary vehicle", J. Sound. Vib., 457, 92-117. https://doi.org/10.1016/j.jsv.2019.05.015