DOI QR코드

DOI QR Code

Regularized model-free adaptive control of smart base-isolated buildings

  • Received : 2022.08.17
  • Accepted : 2024.09.11
  • Published : 2024.08.25

Abstract

Smart base-isolated buildings rest on flexible pads known as base isolators that minimize the effect of external disturbances along with active/semi-active actuators. The strategies used to control these active components are typically based on system models that are known a priori. Although these models describe some of the most important dynamics of the elements involved in the system, the high degree of uncertainty in the behavior of a structure under external disturbances is very difficult to characterize using a fixed model. In this work, we propose a strategy that deals with this issue: the input that controls the actuator in the base isolation system results from the compound action of a controller that relies on a model of the system that is known a priori, and a control policy that is designed based on online data-driven inferences on the behavior of the system. In this way, the control design process incorporates both the prior information about the system and the unknowns of the system, such as non-modeled parameters and nonlinear behaviors in the building. We show through simulations the performance of the proposed method in an eight-story building subjected to seismic loading.

Keywords

Acknowledgement

This work was supported by the University of los Andes under Fondo de Apoyo para Profesores Asistentes FAPA.

References

  1. Asai, T., Chang, C.-M. and Spencer Jr, B. (2015), "Real-time hybrid simulation of a smart base-isolated building", J. Eng. Mech., 141(3), 04014128. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000844
  2. Asfaw, A.M., Cao, L., Ozbulut, O.E. and Ricles, J. (2022), "Development of a shape memory alloy-based friction damper and its experimental characterization considering rate and temperature effects", Eng. Struct., 273, 115101. https://doi.org/10.1016/j.engstruct.2022.115101
  3. Astrom, K. and Wittenmark, B. (2013), Adaptive Control: Second Edition, Dover Books on Electrical Engineering; Dover Publications.
  4. Brewick, P.T., Johnson, E.A., Sato, E. and Sasaki, T. (2020), "Modeling the dynamic behavior of isolation devices in a hybrid base-isolation layer of a full-scale building", J. Eng. Mech., 146(11), 04020127. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001774
  5. Cha, Y.J., Agrawal, A.K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S.J., Spencer, B.F., Ricles, J. and Christenson, R. (2014), "Performance validations of semiactive controllers on large-scale momentresisting frame equipped with 200-knmr damper using real-time hybrid simulations", J. Struct. Eng., 140(10), 04014066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000982
  6. Chang, C.-M. and Spencer, B.F. (2010), "Active base isolation of buildings subjected to seismic excitations", Earthq. Eng. Struct. Dyn., 39(13), 1493-1512. https://doi.org/10.1002/eqe.1040
  7. Chopra, A. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall International Series in Civil Engineering and Pearson/Prentice Hall.
  8. Downey, A., Theisen, C., Murphy, H., Anastasi, N. and Laflamme, S. (2019), "Cam-based passive variable friction device for structural control", Eng. Struct., 188, 430-439. https://doi.org/10.1016/j.engstruct.2019.03.032
  9. Duan, Y.F., Dong, S.H., Xu, S.L. and Yun, C.B. (2022), "Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method", Smart Struct. Syst., Int. J., 30(1), 89-106. https://doi.org/10.12989/sss.2022.30.1.089
  10. Ferj, M. and Lopez-Garcia, D. (2022), "Comparative seismic fragility analysis of conventional and base isolated hospital buildings having different structural systems", J. Earthq. Eng., 26(5), 2491-2513. https://doi.org/10.1080/13632469.2020.1767229
  11. Florez, A.J. and Giraldo, L.F. (2018), "Structural sparsity in networked control systems", IEEE Transact. Syst. Man Cybernet.: Syst., 50(12), 5152-5161. https://doi.org/10.1109/TSMC.2018.2867187
  12. Florez, A.J., Giraldo, L.F. and Reyes, J.C. (2017), "Structural sparsity for active control design in civil engineering", In: 2017 IEEE Conference on Control Technology and Applications (CCTA), August, Maui, HI, USA, pp. 708-713. https://doi.org/10.1109/CCTA.2017.8062545
  13. Florez, A.J., Giraldo, L.F., Gutierrez Soto, M. and Zuniga, F.O. (2021), "Structural sparsity in control design of active and semi-active systems", Struct. Control Health Monitor., 28(8), e2758. https://doi.org/10.1002/stc.2758
  14. Fujino, Y., Siringoringo, D.M., Ikeda, Y., Nagayama, T. and Mizutani, T. (2019), "Research and implementations of structural monitoring for bridges and buildings in Japan", Eng., 5(6), 1093-1119. https://doi.org/10.1016/j.eng.2019.09.006
  15. Gomez, F., Fermandois, G.A. and Spencer Jr, B.F. (2021), "Optimal design of nonlinear energy sinks for mitigation of seismic response on structural systems", Eng. Struct., 232, 111756. https://doi.org/10.1016/j.engstruct.2020.111756
  16. Guo, J., Tang, Z., Chen, S. and Li, Z. (2016), "Control strategy for the substructuring testing systems to simulate soil-structure interaction", Smart Struct. Syst., Int. J., 18(6), 1169-1188. https://doi.org/10.12989/sss.2016.18.6.1169
  17. Gutierrez Soto, M. and Adeli, H. (2017), "Recent advances in control algorithms for smart structures and machines", Expert Syst., 34(2), e12205. https://doi.org/10.1111/exsy.12205
  18. Gutierrez Soto, M. and Adeli, H. (2018), "Vibration control of smart base-isolated irregular buildings using neural dynamic optimization model and replicator dynamics", Eng. Struct., 156, 322-336. https://doi.org/10.1016/j.engstruct.2017.09.037
  19. Harvey Jr, P.S. and Kelly, K.C. (2016), "A review of rolling-type seismic isolation: Historical development and future directions", Eng. Struct., 125, 521-531. https://doi.org/10.1016/j.engstruct.2016.07.031
  20. Hee, H., Gon, J., Gu, S. and Hyeok, K. (2021), "Analysis of control performance in gap size of MR damper", J Korea Inst. Struct. Maint. Inspect., 25(1), 41-50. https://doi.org/10.11112/jksmi.2021.25.1.41
  21. Hou, Z. (2014), Model Free Adaptive Control : Theory and Applications, CRC Press, Boca Raton, FL, USA.
  22. Hou, Z.-S. and Wang, Z. (2013), "From model-based control to data-driven control: Survey, classification and perspective", Inform. Sci., 235, 3-35. https://doi.org/10.1016/j.ins.2012.07.014
  23. Huang, H., Liu, J. and Sun, L. (2015), "Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper", Smart Struct. Syst., Int. J., 16(6), 1003-1021. https://doi.org/10.12989/sss.2015.16.6.1003
  24. Ikhouane, F. and Rodellar, J. (2007), Physical Consistency of the Bouc-Wen Model, chapter 2, pp. 13-35, Wiley-Blackwell.
  25. Jahangiri, V., Sun, C. and Kong, F. (2021), "Study on a 3d pounding pendulum tmd for mitigating bi-directional vibration of offshore wind turbines", Eng. Struct., 241, 112383. https://doi.org/10.1016/j.engstruct.2021.112383
  26. Jannerup, O. and Sorensen, P.H. (2008), Linear Systems Control: Deterministic and Stochastic Methods, Springer Berlin Heidelberg: Imprint: Springer, Berlin, Heidelberg, 1st ed. 2008. edition.
  27. Javad, K., Bahrami, R. and Palizvan, Z. (2022), "A novel multi-feature model predictive control framework for seismically excited high-rise buildings", Struct. Eng. Mech., Int. J., 83(4), 537-549. https://doi.org/10.12989/sem.2022.83.4.537
  28. Javadinasab Hormozabad, S. and Gutierrez Soto, M. (2021), "Load balancing and neural dynamic model to optimize replicator dynamics controllers for vibration reduction of highway bridge structures", Eng. Applicat. Artif. Intell., 99, 104138. https://doi.org/10.1016/j.engappai.2020.104138
  29. Javadinasab Hormozabad, S., Gutierrez Soto, M. and Adeli, H. (2021), "Integrating structural control, health monitoring, and energy harvesting for smart cities", Expert Syst., 38(8), e12845. https://doi.org/10.1111/exsy.12845
  30. Kavyashree, B.G., Patil, S. and Rao, V.S. (2021), "Comparison of classical and reliable controller performances for seismic response mitigation", Earthq. Struct., Int. J., 20(3), 353-364. https://doi.org/10.12989/eas.2021.20.3.353
  31. Lotfi, M., Tajmir, R. and Hashemi, E. (2020), "Investigation on the performance of a new pure torsional yielding damper", Smart Struct. Syst., Int. J., 25(5), 515-530. https://doi.org/10.12989/sss.2020.25.5.515
  32. Lu, L. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589
  33. Madhekar, S. and Jangid, R. (2010), "Seismic response control of benchmark highway bridge using variable dampers", Smart Struct. Syst., Int. J., 6(8), 953-974. https://doi.org/10.12989/sss.2010.6.8.953
  34. Matsagar, V. and Jangid, R. (2010), "Impact response of torsionally coupled base-isolated structures", J. Vib. Control, 16(11), 1623-1649. https://doi.org/10.1177/1077546309103271
  35. Micheli, L., Hong, J., Laflamme, S. and Alipour, A. (2020), "Surrogate models for high performance control systems in wind-excited tall buildings", Appl. Soft Comput., 90, 106133. https://doi.org/10.1016/j.asoc.2020.106133
  36. Miyamoto, K., Sato, D. and She, J. (2018), "A new performance index of lqr for combination of passive base isolation and active structural control", Eng. Struct., 157, 280-299. https://doi.org/10.1016/j.engstruct.2017.11.070
  37. Mohebbi, M. and Bakhshinezhad, S. (2021), "Multiple performance criteria-based risk assessment for structures equipped with MR dampers", Earthq. Struct., Int. J., 20(5), 495-512. https://doi.org/10.12989/eas.2021.20.5.495
  38. Muthalif, A.G., Kasemi, H.B., Nordin, N.D., Rashid, M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085
  39. Najafi, A., Fermandois, G.A. and Spencer Jr, B.F. (2020), "Decoupled model-based real-time hybrid simulation with multi-axial load and boundary condition boxes", Eng. Struct., 219, 110868. https://doi.org/10.1016/j.engstruct.2020.110868
  40. Narasimhan, S.,Nagarajaiah, S., Johnson, E.A. and Gavin, H.P. (2006), "Smart base-isolated benchmark building. part i: problem definition", Struct. Control Health Monitor., 13(2-3), 573-588. https://doi.org/10.1002/stc.99
  41. Nise, N. (2020), Control Systems Engineering, Wiley.
  42. Palacio-Betancur, A. and Gutierrez Soto, M. (2019), "Adaptive tracking control for real-time hybrid simulation of structures subjected to seismic loading", Mech. Syst. Signal Process., 134, 106345. https://doi.org/10.1016/j.ymssp.2019.106345
  43. Palacio-Betancur, A. and Gutierrez Soto, M. (2022), "Recent advances in computational methodologies for real-time hybrid simulation of engineering structures", Arch. Computat. Methods Eng., 30, 1637-1662. https://doi.org/10.1007/s11831-022-09848-y
  44. Pujol, G., Acho, L., Pozo, F., Rodriguez, A. and Vidal, Y. (2011), "A velocity based active vibration control of hysteretic systems", Mech. Syst. Signal Process., 25(1), 465-474. https://doi.org/10.1016/j.ymssp.2010.08.011
  45. Rodellar, J., Garcia, G., Vidal, Y., Acho, L. and Pozo, F. (2017), "Hysteresis based vibration control of baseisolated structures", Procedia Eng., 199, 1798-1803.
  46. X International Conference on Structural Dynamics. Shrimali, M., Bharti, S., and Dumne, S. (2015), "Seismic response analysis of coupled building involving mr damper and elastomeric base isolation", Ain Shams Eng. J., 6(2), 457-470. https://doi.org/10.1016/j.asej.2014.12.007
  47. Spencer Jr, B., Dyke, S., Sain, M. and Carlson, J. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  48. Sun, H. and Li, Q. (2010), "Research and development of seismic base isolation technique for civil engineering structures", In: 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1-5.
  49. Suthar, S.J. and Jangid, R.S. (2021), "Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building", Structures, 33, 2675-2688. https://doi.org/10.1016/j.istruc.2021.05.059
  50. Tanaskovic, M., Fagiano, L., Novara, C. and Morari, M. (2017), "Data-driven control of nonlinear systems: An on-line direct approach", Automatica, 75, 1-10. https://doi.org/10.1016/j.automatica.2016.09.032
  51. Thenozhi, S. and Yu, W. (2013), "Advances in modeling and vibration control of building structures", Annual Rev. Control, 37(2), 346-364. https://doi.org/10.1016/j.arcontrol.2013.09.012
  52. Tso, W. and Hsu, T.-I. (1978), "Torsional spectrum for earthquake motions", Earthq. Eng. Struct. Dyn., 6(4), 375-382. https://doi.org/10.1002/eqe.4290060405
  53. Vu, D.C., Politopoulos, I. and Diop, S. (2018), "A new semi-active control based on nonlinear inhomogeneous optimal control for mixed base isolation", Struct. Control Health Monitor., 25(1), e2032. https://doi.org/10.1002/stc.2032
  54. Waldbjoern, J.P., Maghareh, A., Ou, G., Dyke, S.J. and Stang, H. (2021), "Multi-rate real time hybrid simulation operated on a flexible labview real-time platform", Eng. Struct., 239, 112308. https://doi.org/10.1016/j.engstruct.2021.112308
  55. Wang, Y. and Dyke, S. (2013), "Modal-based lqg for smart base isolation system design in seismic response control", Struct. Control Health Monitor., 20(5), 753-768. https://doi.org/10.1002/stc.1490
  56. Wang, J., Wang, B., Wierschem, N.E. and Spencer Jr, B.F. (2020), "Dynamic analysis of track nonlinear energy sinks subjected to simple and stochastice excitations", Earthq. Eng. Struct. Dyn., 49(9), 863-883. https://doi.org/10.1002/eqe.3268
  57. Warn, G.P. and Ryan, K.L. (2012), "A review of seismic isolation for buildings: Historical development and research needs", Buildings, 2(3), 300-325. https://doi.org/10.3390/buildings2030300
  58. Woo, S.S. and Lee, S.H. (2013), "Damping updating of a building structure installed with an MR damper", Smart Struct. Syst., Int. J., 12(6), 695-705. https://doi.org/10.12989/sss.2013.12.6.695
  59. Xia, Y., Xie, W., Liu, B. and Wang, X. (2013), "Data-driven predictive control for networked control systems", Inform. Sci., 235, 45-54. https://doi.org/10.1016/j.ins.2012.01.047
  60. Yeh, J.-Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with mr elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
  61. Yu, Y., Royel, S., Li, J., Li, Y. and Ha, Q. (2016), "Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control", Earthq. Struct., Int. J., 11(6), 943-966. https://doi.org/10.12989/eas.2016.11.6.943
  62. Yunsong, X., Siringoringo, D.M. and Fujino, Y. (2022), "Condition assessment of seismically isolated multispan highway bridge bearings using recorded and simulated seismic responses", Adv. Struct. Eng., 25(16), 3299-3315. https://doi.org/10.1177/13694332221133195
  63. Zambrano, A., Betancur, A.P., Burbano, L., Nino, A.F., Giraldo, L.F., Soto, M.G., Gutierrez Soto, J. and Cardenas, A.A. (2021), "You make me tremble: A first look at attacks against structural control systems", Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1320-1337.