DOI QR코드

DOI QR Code

Hepatocyte-specific RIG-I loss attenuates metabolic dysfunction-associated steatotic liver disease in mice via changes in mitochondrial respiration and metabolite profiles

  • Jin Kyung Seok (College of Pharmacy, The Catholic University of Korea) ;
  • Gabsik Yang (Department of Pharmacology, College of Korean Medicine, Woosuk University) ;
  • Jung In Jee (College of Pharmacy, The Catholic University of Korea) ;
  • Han Chang Kang (College of Pharmacy, The Catholic University of Korea) ;
  • Yong‑Yeon Cho (College of Pharmacy, The Catholic University of Korea) ;
  • Hye Suk Lee (College of Pharmacy, The Catholic University of Korea) ;
  • Joo Young Lee (College of Pharmacy, The Catholic University of Korea)
  • Received : 2024.06.21
  • Accepted : 2024.09.10
  • Published : 2024.10.15

Abstract

Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogramming in a high-fat diet (HFD)-induced MASLD model in hepatocyte-specific RIG-I-KO (RIG-IΔhep) mice. Our study revealed that hepatic deficiency of RIG-I improved HFD-induced metabolic imbalances, including glucose impairment and insulin resistance. Hepatic steatosis and liver triglyceride levels were reduced in RIG-I-deficient hepatocytes in HFD-induced MASLD mice, and this was accompanied by the reduced expression of lipogenesis genes, such as PPARγ, Dga2, and Pck1. Hepatic RIG-I deficiency alters whole-body metabolic rates in the HFD-induced MASLD model; there is higher energy consumption in RIG-IΔhep mice. Deletion of RIG-I activated glycolysis and tricarboxylic acid (TCA) cycle-related metabolites in hepatocytes from both HFD-induced MASLD mice and methionine-choline-deficient diet (MCD)-fed mice. RIG-I deficiency enhanced AMPK activation and mitochondrial function in hepatocytes from HFD-induced MASLD mice. These findings indicate that deletion of RIG-I can activate cellular metabolism in hepatocytes by switching on both glycolysis and mitochondrial respiration, resulting in metabolic changes induced by a HFD and stimulation of mitochondrial activity. In summary, RIG-I may be a key regulator of cellular metabolism that influences the development of metabolic diseases such as MASLD.

Keywords

Acknowledgement

We thank Younggyu Kwon and Yuri Kang for their technical assistance.

References

  1. Eslam M, George J (2020) Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol 17:40-52. https://doi.org/10.1038/s41575-019-0212-0
  2. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, Colombo M, Craxi A, Crespo J, Day CP, Eguchi Y, Geier A, Kondili LA, Kroy DC, Lazarus JV, Loomba R, Manns MP, Marchesini G, Nakajima A, Negro F, Petta S, Ratziu V, Romero-Gomez M, Sanyal A, Schattenberg JM, Tacke F, Tanaka J, Trautwein C, Wei L, Zeuzem S, Razavi H (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol 69:896-904. https://doi.org/10.1016/j.jhep.2018.05.036
  3. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1-28. https://doi.org/10.1016/j.mito.2005.10.004
  4. Middleton P, Vergis N (2021) Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 14:17562848211031394. https://doi.org/10.1177/17562848211031394
  5. Arrese M, Cabrera D, Kalergis AM, Feldstein AE (2016) Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 61:1294-1303. https://doi.org/10.1007/s10620-016-4049-x
  6. Yu L, Li Y, Du C, Zhao W, Zhang H, Yang Y, Sun A, Song X, Feng Z (2019) Pattern recognition receptor-mediated chronic inflammation in the development and progression of obesity-related metabolic diseases. Mediators Inflamm 2019:5271295. https://doi.org/10.1155/2019/5271295
  7. Vila IK, Badin PM, Marques MA, Monbrun L, Lefort C, Mir L, Louche K, Bourlier V, Roussel B, Gui P, Grober J, Stich V, Rossmeislova L, Zakarof-Girard A, Bouloumie A, Viguerie N, Moro C, Tavernier G, Langin D (2014) Immune cell toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fbrosis. Cell Rep 7:1116-1129. https://doi.org/10.1016/j.celrep.2014.03.062
  8. Zhang N, Liang H, Farese RV, Li J, Musi N, Hussey SE (2015) Pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. PLoS One 10:e0132575. https://doi.org/10.1371/journal.pone.0132575
  9. Seok JK, Kang HC, Cho YY, Lee HS, Lee JY (2021) Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharmacal Res 44:16-35. https://doi.org/10.1007/s12272-021-01307-9
  10. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296-300. https://doi.org/10.1126/science.1184003
  11. Yang G, Jang JH, Kim SW, Han SH, Ma KH, Jang JK, Kang HC, Cho YY, Lee HS, Lee JY (2020) Sweroside prevents nonalcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int J Mol Sci 21:2790. https://doi.org/10.3390/ijms21082790
  12. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66:1037-1046. https://doi.org/10.1016/j.jhep.2017.01.022
  13. Yang G, Lee HE, Moon SJ, Ko KM, Koh JH, Seok JK, Min JK, Heo TH, Kang HC, Cho YY, Lee HS, Fitzgerald KA, Lee JY (2020) Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol 72:1192-1202. https://doi.org/10.1002/art.41245
  14. Yang G, Lee HE, Lee JY (2016) A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci Rep 6:24399. https://doi.org/10.1038/srep24399
  15. Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20:537-551. https://doi.org/10.1038/s41577-020-0288-3
  16. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIGI- and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988. https://doi.org/10.1038/ni1243
  17. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601-1610. https://doi.org/10.1084/jem.20080091
  18. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M Jr (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104:582-587. https://doi.org/10.1073/pnas.0606699104
  19. Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C, Hornung V, Endres S, Ruzicka T, Rothenfusser S, Hartmann G (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119:2399-2411. https://doi.org/10.1172/JCI37155
  20. Kato H, Fujita T (2015) RIG-I-like receptors and autoimmune diseases. Curr Opin Immunol 37:40-45. https://doi.org/10.1016/j.coi.2015.10.002
  21. Pan Y, Li G, Zhong H, Chen M, Chen T, Gao L, Wu H, Guo J (2016) RIG-I inhibits pancreatic beta cell proliferation through competitive binding of activated Src. Sci Rep 6:28914. https://doi.org/10.1038/srep28914
  22. Yang G, Lee HE, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY (2021) RIG-I deficiency promotes obesity-induced insulin resistance. Pharmaceuticals (Basel) 14:1178. https://doi.org/10.3390/ph14111178
  23. Jang JH, Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY (2023) Loganin prevents hepatic steatosis by blocking NLRP3 inflammasome activation. Biomol Ther (Seoul) 31:40-47. https://doi.org/10.4062/biomolther.2022.077
  24. Lee JK, Seok JK, Cho I, Yang G, Kim KB, Kwack SJ, Kang HC, Cho YY, Lee HS, Lee JY (2021) Topical application of celastrol alleviates atopic dermatitis symptoms mediated through the regulation of thymic stromal lymphopoietin and group 2 innate lymphoid cells. J Toxicol Environ Health A 84:922-931. https://doi.org/10.1080/15287394.2021.1955785
  25. Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123:2764-2772. https://doi.org/10.1172/JCI67227
  26. Garcia D, Hellberg K, Chaix A, Wallace M, Herzig S, Badur MG, Lin T, Shokhirev MN, Pinto AFM, Ross DS, Saghatelian A, Panda S, Dow LE, Metallo CM, Shaw RJ (2019) Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep 26:e196. https://doi.org/10.1016/j.celrep.2018.12.036
  27. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357-368. https://doi.org/10.1101/gad.1177604
  28. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121-135. https://doi.org/10.1038/nrm.2017.95
  29. Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, Chi J, Bai X, Wu G, Chen X, Zhang Y, Jin S (2015) Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3beta pathway. Br J Pharmacol 172:3284-3301. https://doi.org/10.1111/bph.13120
  30. Greer EL, Banko MR, Brunet A (2009) AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Ann N Y Acad Sci 1170:688-692. https://doi.org/10.1111/j.1749-6632.2009.04019.x
  31. Gross DN, Wan M, Birnbaum MJ (2009) The role of FOXO in the regulation of metabolism. Curr Diab Rep 9:208-214. https://doi.org/10.1007/s11892-009-0034-5
  32. Jialal I, Kaur H, Devaraj S (2014) Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab 99:39-48. https://doi.org/10.1210/jc.2013-3092
  33. Choi N, Yang G, Jang JH, Kang HC, Cho YY, Lee HS, Lee JY (2021) Loganin alleviates gout inflammation by suppressing NLRP3 inflammasome activation and mitochondrial damage. Molecules 26:1071. https://doi.org/10.3390/molecules26041071
  34. Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY (2023) Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Arch Pharmacal Res 46:500-534. https://doi.org/10.1007/s12272-023-01452-3
  35. Zhang Q, Liu S, Zhang CS, Wu Q, Yu X, Zhou R, Meng F, Wang A, Zhang F, Chen S, Wang X, Li L, Huang J, Huang YW, Zou J, Qin J, Liang T, Feng XH, Lin SC, Xu P (2022) AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity. Mol Cell 82:e4517. https://doi.org/10.1016/j.molcel.2022.10.026
  36. Prantner D, Perkins DJ, Vogel SN (2017) AMP-activated kinase (AMPK) promotes innate immunity and antiviral defense through modulation of stimulator of interferon genes (STING) signaling. J Biol Chem 292:292-304. https://doi.org/10.1074/jbc.M116.763268
  37. Li XY, Jiang LJ, Chen L, Ding ML, Guo HZ, Zhang W, Zhang HX, Ma XD, Liu XZ, Xi XD, Chen SJ, Chen Z, Zhu J (2014) RIG-I modulates Src-mediated AKT activation to restrain leukemic stemness. Mol Cell 53:407-419. https://doi.org/10.1016/j.molcel.2013.12.008