Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST) (NRF-2019R1A2C1008984).
References
- World Health Organization (2020) Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. https://www.iarc.who.int/fr/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020. Accessed 1 Apr 2024
- Blasiak J (2017) DNA-damaging anticancer drugs - a perspective for DNA repair- oriented therapy. Curr Med Chem 24:1488-1503. https://doi.org/10.2174/0929867324666170124145557
- Bianchini G, Balko JM, Mayer IA et al (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674-690. https://doi.org/10.1038/nrclinonc.2016.66
- Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938-1948. https://doi.org/10.1056/NEJMra1001389
- Pareja F, Geyer FC, Marchio C et al (2016) Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2:16036. https://doi.org/10.1038/npjbcancer.2016.36
- Yin L, Duan JJ, Bian XW et al (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22:61. https://doi.org/10.1186/s13058-020-01296-5
- Mandapati A, Lukong KE (2023) Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 149:3701-3719. https://doi.org/10.1007/s00432-022-04189-6
- Ismail-Khan R, Bui MM (2010) A review of triple-negative breast cancer. Cancer Control 17:173-176. https://doi.org/10.1177/107327481001700305
- Kumar P, Aggarwal R (2016) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247-269. https://doi.org/10.1007/s00404-015-3859-y
- Nedeljkovic M, Damjanovic A (2019) Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells 8:957. https://doi.org/10.3390/cells8090957
- Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467-2498. https://doi.org/10.1021/cr980421n
- Wiencke JK, Wiemels J (1995) Genotoxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Mutat Res 339:91-119. https://doi.org/10.1016/0165-1110(95)90005-5
- Szigeti A, Hocsak E, Rapolti E et al (2010) Facilitation of mitochondrial outer and inner membrane permeabilization and cell death in oxidative stress by a novel Bcl-2 homology 3 domain protein. J Biol Chem 285:2140-2151. https://doi.org/10.1074/jbc.M109.015222
- Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583-588. https://doi.org/10.1038/nature14136
- Krug K, Jaehnig EJ, Satpathy S et al (2020) Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183:1436-1456. https://doi.org/10.1016/j.cell.2020.10.036
- Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088
- Chandrashekar DS, Karthikeyan SK, Korla PK et al (2022) UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 25:18-27. https://doi.org/10.1016/j.neo.2022.01.001
- Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84-87. https://doi.org/10.1126/science.1247005
- Freire F, Romao MJ, Macedo AL et al (2009) Preliminary structural characterization of human SOUL, a haem-binding protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:723-726. https://doi.org/10.1107/S174430910902291X
- Taketani S, Adachi Y, Kohno H et al (1998) Molecular characterization of a newly identified heme-binding protein induced during differentiation of urine erythroleukemia cells. J Biol Chem 273:31388-31394. https://doi.org/10.1074/jbc.273.47.31388
- Qin J, Yang Y, Gao S et al (2017) Deregulated ALG-2/HEBP2 axis alters microtubule dynamics and mitotic spindle behavior to stimulate cancer development. J Cell Physiol 232:3067-3076. https://doi.org/10.1002/jcp.25754
- Farkas R, Pozsgai E, Bellyei S et al (2011) Correlation between tumor-associated proteins and response to neoadjuvant treatment in patients with advanced squamous-cell esophageal cancer. Anticancer Res 31:1769-1775
- Zoltan L, Farkas R, Schally AV et al (2019) Possible predictive markers of response to therapy in esophageal squamous cell cancer. Pathol Oncol Res 25:279-288. https://doi.org/10.1007/s12253-017-0342-z
- Kohn KW (1977) Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas. Cancer Res 37:1450-1454
- Malinge JM, Giraud-Panis MJ, Leng M (1999) Interstrand crosslinks of cisplatin induce striking distortions in DNA. J Inorg Biochem 77:23-29. https://doi.org/10.1016/s0162-0134(99)00148-8
- Ovejero S, Soulet C, Moriel-Carretero M (2021) The alkylating agent methyl methanesulfonate triggers lipid alterations at the inner nuclear membrane that are independent from its DNA-damaging ability. Int J Mol Sci 22:7461. https://doi.org/10.3390/ijms22147461
- Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235:179-192. https://doi.org/10.1016/s0378-5173(01)00986-3
- Fu R, Zhao B, Chen M et al (2023) Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol 41:9. https://doi.org/10.1007/s12032-023-02237-w
- Xiao Y, Lin FT, Lin WC (2021) ACTL6A promotes repair of cisplatin-induced DNA damage, a new mechanism of platinum resistance in cancer. Proc Natl Acad Sci U S A 118:e2015808118. https://doi.org/10.1073/pnas.2015808118
- Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162. https://doi.org/10.1371/journal.pone.0081162
- Frischer H, Ahmad T (1977) Severe generalized glutathione reductase deficiency after antitumor chemotherapy with BCNU" [1,3-bis(chloroethyl)-1-nitrosourea]. J Lab Clin Med 89:1080-1091
- Rowe LA, Degtyareva N, Doetsch PW (2008) DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 45:1167-1177. https://doi.org/10.1016/j.freeradbiomed.2008.07.018
- Goodfellow BJ, Freire F, Carvalho AL et al (2021) The SOUL family of heme-binding proteins: Structure and function 15 years later. Coord Chem Rev 448:214189. https://doi.org/10.1016/j.ccr.2021.214189