Acknowledgement
This research was supported by the Ministry of the Environment's "Chemical Material Safety Management Professional Training Project." The authors are deeply grateful to Dr. Dong Deuk Jang from HLB BioStep Co., Ltd. (Incheon, Korea) for technical support of the whole slide image and CentralBio Co., Ltd. (Incheon, Korea) for providing the tissue slides.
References
- Shinde PP, Shah S (2018) A review of machine learning and deep learning applications. In: 2018 Fourth international conference on computing communication control and automation (ICCUBEA). Pune, India, pp 1-6. https://doi.org/10.1109/ICCUBEA.2018.8697857
- Park SH (2018) Artificial intelligence in medicine: beginner's guide. J Korean Soc Radiol 78:301-308. https://doi.org/10.3348/jksr.2018.78.5.301
- Xing F, Xie Y, Su H, Liu F, Yang L (2018) Deep learning in microscopy image analysis: a survey. IEEE Trans Neural Netw Learn Syst 29:4550-4568. https://doi.org/10.1109/TNNLS.2017.2766168
- Zhao Z-Q, Zheng P, Xu S-T, Wu X (2019) Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst 30:3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
- Nam S, Chong Y, Jung CK, Kwak T-Y et al (2020) Introduction to digital pathology and computer-aided pathology. J Pathol Transl Med 54:125-134. https://doi.org/10.4132/jptm.2019.12.31
- Byun JS, Lee JH, Kang JS, Han BS (2022) Comparative analysis of imaging diagnostic models for tubular basophilia and mineralization of kidney. Lab Anim Res 38:29. https://doi.org/10.1186/s42826-022-00139-y
- Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, Beckwith BA, Evans AJ, Christopher N et al (2013) Validating whole slide imaging for diagnostic purposes in pathology: guideline from the college of American pathologists pathology and laboratory quality center. Arch Pathol Lab Med 137:1710-1722. https://doi.org/10.5858/arpa.2013-0093-CP
- Zarella MD, Bowman D, Aefner F, Farahani N, Xthona A, Absar SF, Parwani A, Bui M, Hartman DJ (2019) A practical guide to whole slide imaging: a white paper from the digital pathology association. Arch Pathol Lab Med 143:222-234. https://doi.org/10.5858/arpa.2018-0343-RA
- Niazi MKK, Parwani AV, Gurcan MN (2019) Digital pathology and artificial intelligence. Lancet Oncol 20:e253-e261. https://doi.org/10.1016/S1470-2045(19)30154-8
- Shaoxu Wu, Hong G, Abai Xu, Zeng H, Chen X, Wang Y, Luo Y, Peng Wu, Liu C, Jiang N et al (2023) Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol 24:360-370. https://doi.org/10.1016/S1470-2045(23)00061-X
- Mehrvar S, Himmel LE, Babburi P, Goldberg AL, Guffroy M, Janardhan K, Krempley AL, Bawa B (2021) Deep learning approaches and applications in toxicologic histopathology: current status and future perspectives. J Pathol Inform 12:42. https://doi.org/10.4103/jpi.jpi_36_21
- LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444. https://doi.org/10.1038/nature14539
- Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60:84-90. https://doi.org/10.1145/3065386
- Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1-9. https://doi.org/10.1109/CVPR.2015.7298594
- He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770-778. https://doi.org/10.48550/arXiv.1512.03385
- Boukhriss RR, Fendri E, Hammami M (2020) Moving object detection under different weather conditions using full-spectrum light sources. Pattern Recogn Lett 129:205-212. https://doi.org/10.1016/j.patrec.2019.11.004
- Park S, Ji M, Chun J (2018) 2D human pose estimation based on object detection using RGB-D information. KSII Trans Internet Inf Syst 12:800-816. https://doi.org/10.3837/tiis.2018.02.015
- Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp 779-788. https://doi.org/10.48550/arXiv.1506.02640
- He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision (ICCV). pp 2961-2969. https://doi.org/10.48550/arXiv.1703.06870
- Reis D, Kupec J, Hong J, Daoudi A (2023) Real-time flying object detection with YOLOv8. ArXiv 2023, arXiv:2305.09972. https://doi.org/10.48550/arXiv.2305.09972
- Ge Z, Liu S, Wang F, Li Z, Sun J (2021) YOLOX: exceeding YOLO series in 2021. ArXiv 2021, arXiv:2107.08430. https://doi.org/10.48550/arXiv.2107.08430
- RangeKing (2023) Brief summary of YOLOv8 model structure #189. Github. https://github.com/ultralytics/ultralytics/issues/189#issue-1527158137. Accessed 10 Jan 2023
- Wang X, Kong T, Shen C, Jiang Y, Li L (2019) SOLO: segmenting objects by locations. ArXiv 2019, arXiv:1912.04488. https://doi.org/10.48550/arXiv.1912.04488
- Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R (2021) Masked-attention mask transformer for universal image segmentation. ArXiv 2021, arXiv:2112.01527. https://doi.org/10.48550/arXiv.2112.01527
- Wang X, Zhang R, Kong T, Li L, Shen C (2020) SOLOv2: dynamic and fast instance segmentation. ArXiv 2020, arXiv:2003.10152. https://doi.org/10.48550/arXiv.2003.10152
- Bouteldja N, Klinkhammer BM, Bulow RD, Droste P, Otten SW, von Stillfried SF et al (2021) Deep learning-based segmentation and quantification in experimental kidney histopathology. J Am Soc Nephrol 32:52-68. https://doi.org/10.1681/ASN.2020050597
- Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S, Roelofs JJTH et al (2019) Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol 10:1968-1979. https://doi.org/10.1681/ASN.2019020144
- Hwang J-H, Lim M, Han G, Park H, Kim Y-B, Park J, Jun S-Y, Lee J, Cho J-W (2023) A comparative study on the implementation of deep learning algorithms for detection of hepatic necrosis in toxicity studies. Toxicol Res 39:399-408. https://doi.org/10.1007/s43188-023-00173-5
- Wang KS, Yu G, Xu C, Meng XH, Zhou J, Zheng C, Deng Z, Shang L, Liu R, Su S, Zhou X et al (2021) Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC Med 19:76. https://doi.org/10.1186/s12916-021-01942-5
- Hwang J-H, Kim H-J, Park H, Lee B-S, Son H-Y, Kim Y-B, Jun S-Y, Park J-H, Lee J, Cho J-W (2022) Implementation and practice of deep learning-based instance segmentation algorithm for quantification of hepatic fibrosis at whole slide level in Sprague-Dawley rats. Toxicol Pathol 50:186-196. https://doi.org/10.1177/01926233211057128
- Vuola AO, Akram SU, Kannala J (2019) Mask-RCNN and U-Net ensembled for nuclei segmentation. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). Venice, Italy, pp 208-212. https://doi.org/10.1109/ISBI.2019.8759574
- Meng J, Xue L, Chang Y, Zhang J, Chang S, Liu K, Liu S, Wang B, Yang K (2020) Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using mask R-CNN. Open Life Sci 15:588-596. https://doi.org/10.1515/biol-2020-0055
- Chiao J-Y, Chen K-Y, Liao KY-K, Hsieh P-H, Zhang G, Huang T-C (2019) Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine (Baltimore) 98:e15200. https://doi.org/10.1097/MD.0000000000015200
- Baek EB, Lee J, Hwang J-H, Park H, Lee B-S, Kim Y-B, Jun S-Y, Her J, Son H-Y, Cho J-W (2023) Application of multiple-finding segmentation utilizing mask R-CNN-based deep learning in a rat model of drug-induced liver injury. Sci Rep 13:17555. https://doi.org/10.1038/s41598-023-44897-8
- Antus B, Yao Y, Liu S, Song E, Lutz J, Heemann U (2001) Contribution of androgens to chronic allograft nephropathy is mediated by dihydrotestoster. Kidney Int 60:1955-1963. https://doi.org/10.1046/j.1523-1755.2001.00007.x
- Parente Filho SLA, de Carvalho Gomes PEA, Forte GA, Lima LLL et al (2020) Kidney disease associated with androgenic - anabolic steroids and vitamin supplements abuse: be aware! Nefrologia (Engl Ed) 40:26-31. https://doi.org/10.1016/j.nefro.2019.06.003
- Barthold SW (1979) Chronic progressive nephropathy in aging rats. Toxicologic Pathol 7:1-6. https://doi.org/10.1177/019262337900700101
- Haschek WM, Rousseaux CG, Wallig MA (2013) Haschek and Rousseaux's handbook of toxicologic pathology. Academic Press, United States. ISBN: 9780124157590
- Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Lawrence Zitnick C, Dollar P (2014) Microsoft COCO: common objects in context. ArXiv 2014, arXiv:1405.0312. https://doi.org/10.48550/arXiv.1405.0312
- Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168:022022. https://doi.org/10.1088/1742-6596/1168/2/022022
- Jia W, Wei J, Zhang Q, Pan N, Niu Y, Yin X, Ding Y, Ge X (2022) Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard. Front Plant Sci 13:955256. https://doi.org/10.3389/fpls.2022.955256
- Kulkarni A, Chong D, Batarseh FA (2020) Foundations of data imbalance and solutions for a data democracy. In: Data democracy. Academic Press, pp 83-106. https://doi.org/10.1016/B978-0-12-818366-3.00005-8
- He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21:1263-1284. https://doi.org/10.1109/TKDE.2008.239