DOI QR코드

DOI QR Code

The impact of manganese on vascular endothelium

  • Gustavo H. Oliveira‑Paula (Department of Molecular Pharmacology, Albert Einstein College of Medicine) ;
  • Airton C. Martins (Department of Molecular Pharmacology, Albert Einstein College of Medicine) ;
  • Beatriz Ferrer (Department of Molecular Pharmacology, Albert Einstein College of Medicine) ;
  • Alexey A. Tinkov (Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University) ;
  • Anatoly V. Skalny (Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University) ;
  • Michael Aschner (Department of Molecular Pharmacology, Albert Einstein College of Medicine)
  • 투고 : 2024.05.04
  • 심사 : 2024.07.26
  • 발행 : 2024.10.15

초록

Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure.

키워드

과제정보

MA was supported in part by a grant from the National Institute of Environmental Health Sciences (NIEHS) R01ES10563. AAT and AVS were supported by the Russian Ministry of Science and Higher Education (FENZ-2023-0004).

참고문헌

  1. Wechselberger C, Messner B, Bernhard D (2023) The role of trace elements in cardiovascular diseases. Toxics 11:956. https://doi.org/10.3390/toxics11120956 
  2. Milto IV, Suhodolo IV, Prokopieva VD, Klimenteva TK (2016) Molecular and cellular bases of iron metabolism in humans. Biochemistry (Mosc) 81:549-564. https://doi.org/10.1134/S0006297916060018 
  3. Stiles LI, Ferrao K, Mehta KJ (2024) Role of zinc in health and disease. Clin Exp Med 24:38. https://doi.org/10.1007/s10238-024-01302-6 
  4. Pirkmajer S, Chibalin AV (2016) Na, K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 311:E1-E31. https://doi.org/10.1152/ajpendo.00539.2015 
  5. Martins AC, Krum BN, Queiros L, Tinkov AA, Skalny AV, Bowman AB, Aschner M (2020) Manganese in the diet: bioaccessibility, adequate intake, and neurotoxicological effects. J Agric Food Chem 68:12893-12903. https://doi.org/10.1021/acs.jafc.0c00641 
  6. Martins AC Jr, Gubert P, Villas Boas GR, Meirelles Paes M, Santamaria A, Lee E, Tinkov AA, Bowman AB, Aschner M (2020) Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 20:1109-1121. https://doi.org/10.1080/14737175.2020.1807330 
  7. Ikeda S, Sera Y, Yoshida M, Ohshiro H, Uchino S, Oka Y, Lee KJ, Kotera A (2000) Manganese deposits in patients with biliary atresia after hepatic porto-enterostomy. J Pediatr Surg 35:450-453. https://doi.org/10.1016/s0022-3468(00)90212-4 
  8. Zhang Y, Liu M, Yang S, Zhang Y, Ye Z, Wu Q, Li R, Zhou C, He P, Liu C, Jiang J, Liang M, Wang G, Hou FF, Qin X (2024) Positive association between dietary manganese intake and new-onset hypertension: a nationwide cohort study in China. Nutr Metab Cardiovasc Dis 34:699-705. https://doi.org/10.1016/j.numecd.2023.11.005 
  9. Chen SY, Wu CF, Wu C, Chan CC, Hwang JS, Su TC (2022) Urban fine particulate matter and elements associated with subclinical atherosclerosis in adolescents and young adults. Environ Sci Technol 56:7266-7274. https://doi.org/10.1021/acs.est.1c06347 
  10. Behrendt D, Ganz P (2002) Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90:40L-48L. https://doi.org/10.1016/s0002-9149(02)02963-6 
  11. Oliveira-Paula GH, Lacchini R, Tanus-Santos JE (2016) Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 575:584-599. https://doi.org/10.1016/j.gene.2015.09.061 
  12. Kadry H, Noorani B, Cucullo L (2020) A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:69. https://doi.org/10.1186/s12987-020-00230-3 
  13. van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521-534. https://doi.org/10.1093/brain/awl318 
  14. Poduslo JF, Curran GL, Wengenack TM, Malester B, Duf K (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer's disease. Neurobiol Dis 8:555-567. https://doi.org/10.1006/nbdi.2001.0402 
  15. Yokel RA (2009) Manganese fux across the blood-brain barrier. Neuromolecular Med 11:297-310. https://doi.org/10.1007/s12017-009-8101-2 
  16. Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresinski G, Portincasa P, Buszewicz G, Radzikowska-Buchner E, Flieger J (2023) Consequences of disturbing manganese homeostasis. Int J Mol Sci 24:14959. https://doi.org/10.3390/ijms241914959 
  17. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, Citra M (2012) Toxicological profile for manganese. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA 
  18. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205-1218. https://doi.org/10.1007/s00775-008-0404-5 
  19. Erikson KM, Aschner M (2019) Manganese: its role in disease and health. Met Ions Life Sci. https://doi.org/10.1515/9783110527872-016 
  20. Martins AC Jr, Ruella Oliveira S, Barbosa F Jr, Tinkov AA, SkalnySantamariaLee AVAE, Bowman AB, Aschner M (2021) Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 17:581-593. https://doi.org/10.1080/17425255.2021.1894123 
  21. Bowman AB, Aschner M (2014) Considerations on manganese (Mn) treatments for in vitro studies. Neurotoxicology 41:141-142. https://doi.org/10.1016/j.neuro.2014.01.010 
  22. Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, da Cunha MA Jr, AkinyemiAranoffAntunes Soares ANFA, Bowman AB, Aschner M (2020) The effects of manganese overexposure on brain health. Neurochem Int 135:104688. https://doi.org/10.1016/j.neuint.2020.104688 
  23. Guo F, Wang M, Huang M, Jiang Y, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Cheng A, Liu M (2023) Manganese efflux achieved by meta and metb affects oxidative stress resistance and iron homeostasis in Riemerella anatipestifer. Appl Environ Microbiol 89:e0183522. https://doi.org/10.1128/aem.01835-22 
  24. Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur ME, Saint-Amour D, Legrand M, Sauve S, Bouchard MF (2014) Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect 122:1343-1350. https://doi.org/10.1289/ehp.1307918 
  25. Pavilonis BT, Lioy PJ, Guazzetti S, Bostick BC, Donna F, Peli M, Zimmerman NJ, Bertrand P, Lucas E, Smith DR, Georgopoulos PG, Mi Z, Royce SG, Lucchini RG (2015) Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. J Expo Sci Environ Epidemiol 25:443-450. https://doi.org/10.1038/jes.2014.70 
  26. Cowan DM, Fan Q, Zou Y, Shi X, Chen J, Aschner M, Rosenthal FS, Zheng W (2009) Manganese exposure among smelting workers: blood manganese-iron ratio as a novel tool for manganese exposure assessment. Biomarkers 14:3-16. https://doi.org/10.1080/13547500902730672 
  27. Carter KA, Simpson CD, Raftery D, Baker MG (2021) Short report: using targeted urine metabolomics to distinguish between manganese exposed and unexposed workers in a small occupational cohort. Front Public Health 9:666787. https://doi.org/10.3389/fpubh.2021.666787 
  28. Ruiz-Azcona L, Fernandez-Olmo I, Exposito A, Markiv B, Paz-Zulueta M, Paras-Bravo P, Sarabia-Cobo C, Santibanez M (2021) Impact of environmental airborne manganese exposure on cognitive and motor functions in adults: a systematic review and meta-analysis. Int J Environ Res Public Health 18:4075. https://doi.org/10.3390/ijerph18084075 
  29. Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M (2021) Molecular targets of manganese-induced neurotoxicity: a five-year update. Int J Mol Sci 22:4646. https://doi.org/10.3390/ijms22094646 
  30. Liu C, Ju R (2023) Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicol Sci 191:193-200. https://doi.org/10.1093/toxsci/kfac130 
  31. Brown S, Taylor NL (1999) Could mitochondrial dysfunction play a role in manganese toxicity? Environ Toxicol Pharmacol 7:49-57. https://doi.org/10.1016/s1382-6689(98)00054-4 
  32. Martins AC, Virgolini MB, Avila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M (2023) Mitochondria in the spotlight: C. elegans as a model organism to evaluate xenobiotic-induced dysfunction. Cells 12:2124. https://doi.org/10.3390/cells12172124 
  33. Zhou H, Chen N, He B, Ma Z, Liu W, Xu B (2024) Melatonin modulates the differentiation of neural stem cells exposed to manganese via SIRT1/beta-catenin signaling. Food Chem Toxicol 184:114349. https://doi.org/10.1016/j.fct.2023.114349 
  34. Dastych M, Husova L, Aiglova K, Fejfar T, Dastych M Jr (2021) Manganese and copper levels in patients with primary biliary cirrhosis and primary sclerosing cholangitis. Scand J Clin Lab Invest 81:116-120. https://doi.org/10.1080/00365513.2020.1864835 
  35. Long LL, Li XR, Huang ZK, Jiang YM, Fu SX, Zheng W (2009) Relationship between changes in brain MRI and (1)H-MRS, severity of chronic liver damage, and recovery after liver transplantation. Exp Biol Med (Maywood) 234:1075-1085. https://doi.org/10.3181/0903-RM-118 
  36. Jiang Y, Zheng W (2005) Cardiovascular toxicities upon manganese exposure. Cardiovasc Toxicol 5:345-354. https://doi.org/10.1385/ct:5:4:345 
  37. Kruger-Genge A, Blocki A, Franke RP, Jung F (2019) Vascular endothelial cell biology: an update. Int J Mol Sci 20:4411. https://doi.org/10.3390/ijms20184411 
  38. Wettschureck N, Strilic B, Offermanns S (2019) Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev 99:1467-1525. https://doi.org/10.1152/physrev.00037.2018 
  39. Herrmann J, Lerman A (2001) The endothelium: dysfunction and beyond. J Nucl Cardiol 8:197-206. https://doi.org/10.1067/mnc. 2001.114148 
  40. Florey (1966) The endothelial cell. Br Med J 2:487-490. https://doi.org/10.1136/bmj.2.5512.487 
  41. Kumar G, Dey SK, Kundu S (2020) Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 259:118377. https://doi.org/10.1016/j.lfs.2020.118377 
  42. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183-252. https://doi.org/10.1152/physrev.00022.2002 
  43. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327-334. https://doi.org/10.1016/s1471-4906(03)00117-0 
  44. Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105-113. https://doi.org/10.1093/bja/aeh163 
  45. Wang M, Hao H, Leeper NJ, Zhu L, Early Career C (2018) Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol 38:e90-e95. https://doi.org/10.1161/ATVBAHA.118.310367 
  46. Neubauer K, Zieger B (2022) Endothelial cells and coagulation. Cell Tissue Res 387:391-398. https://doi.org/10.1007/s00441-021-03471-2 
  47. Yau JW, Teoh H, Verma S (2015) Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15:130. https://doi.org/10.1186/s12872-015-0124-z 
  48. Badimon L, Padro T, Vilahur G (2012) Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 1:60-74. https://doi.org/10.1177/2048872612441582 
  49. Oliveira-Paula GH, Lacchini R, Tanus-Santos JE (2017) Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 63:39-51. https://doi.org/10.1016/j.niox.2016.08.004 
  50. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H (2003) Protective role of endothelial nitric oxide synthase. J Pathol 199:8-17. https://doi.org/10.1002/path.1250 
  51. Li H, Wallerath T, Forstermann U (2002) Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 7:132-147. https://doi.org/10.1016/s1089-8603(02)00127-1 
  52. Moreno H Jr, Metze K, Bento AC, Antunes E, Zatz R, de Nucci G (1996) Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease. Basic Res Cardiol 91:248-255. https://doi.org/10.1007/BF00788911 
  53. Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145-158 
  54. Denninger JW, Marletta MA (1999) Guanylate cyclase and the. NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334-350. https://doi.org/10.1016/s0005-2728(99)00024-9 
  55. Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433-8443. https://doi.org/10.1016/S0021-9258(17)34310-7 
  56. Walford G, Loscalzo J (2003) Nitric oxide in vascular biology. J Thromb Haemost 1:2112-2118. https://doi.org/10.1046/j.1538-7836.2003.00345.x 
  57. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525-563. https://doi.org/10.1124/pr.110.002907 
  58. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267:C1405-C1413. https://doi.org/10.1152/ajpcell.1994.267.5.C1405 
  59. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105:1631-1639. https://doi.org/10.1172/JCI9551 
  60. Herce-Pagliai C, Kotecha S, Shuker DE (1998) Analytical methods for 3-nitrotyrosine as a marker of exposure to reactive nitrogen species: a review. Nitric Oxide 2:324-336. https://doi.org/10.1006/niox.1998.0192 
  61. Koppenol WH (1998) The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 25:385-391. https://doi.org/10.1016/s0891-5849(98)00093-8 
  62. Santhanam L, Lim HK, Lim HK, Miriel V, Brown T, Patel M, Balanson S, Ryoo S, Anderson M, Irani K, Khanday F, Di Costanzo L, Nyhan D, Hare JM, Christianson DW, Rivers R, Shoukas A, Berkowitz DE (2007) Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res 101:692-702. https://doi.org/10.1161/CIRCRESAHA.107.157727 
  63. Stitham J, Midgett C, Martin KA, Hwa J (2011) Prostacyclin: an inflammatory paradox. Front Pharmacol 2:24. https://doi.org/10.3389/fphar.2011.00024 
  64. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS (2008) Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 93:141-147. https://doi.org/10.1113/expphysiol.2007.038588 
  65. Boie Y, Rushmore TH, Darmon-Goodwin A, Grygorczyk R, Slipetz DM, Metters KM, Abramovitz M (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 269:12173-12178. https://doi.org/10.1016/S0021-9258(17)32697-2 
  66. Moncada S, Vane JR (1979) The role of prostacyclin in vascular tissue. Fed Proc 38:66-71 
  67. Rogula SP, Mutwil HM, Gasecka A, Kurzyna M, Filipiak KJ (2021) Antiplatelet effects of prostacyclin analogues: which one to choose in case of thrombosis or bleeding? Cardiol J 28:954-961. https://doi.org/10.5603/CJ.a2020.0164 
  68. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86:2863-2867. https://doi.org/10.1073/pnas.86.8.2863 
  69. Ishikawa K, Ihara M, Noguchi K, Mase T, Mino N, Saeki T, Fukuroda T, Fukami T, Ozaki S, Nagase T et al (1994) Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788. Proc Natl Acad Sci USA 91:4892-4896. https://doi.org/10.1073/pnas.91.11.4892 
  70. Cardillo C, Kilcoyne CM, Cannon RO 3rd, Panza JA (2000) Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension 35:1237-1241. https://doi.org/10.1161/01.hyp.35.6.1237 
  71. Haryono A, Ramadhiani R, Ryanto GRT, Emoto N (2022) Endothelin and the cardiovascular system: the long journey and where we are going. Biology (Basel) 11:759. https://doi.org/10.3390/biology11050759 
  72. Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA (2022) Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 79:372. https://doi.org/10.1007/s00018-022-04403-1 
  73. McCabe SM, Zhao N (2021) The potential roles of blood-brain barrier and blood-cerebrospinal fluid barrier in maintaining brain manganese homeostasis. Nutrients 13:1833. https://doi.org/10.3390/nu13061833 
  74. Grotta JC, Jacobs TP, Koroshetz WJ, Moskowitz MA (2008) Stroke program review group: an interim report. Stroke 39:1364-1370. https://doi.org/10.1161/STROKEAHA.107.510776 
  75. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17-42. https://doi.org/10.1016/j.neuron.2017.07.030 
  76. Trimm E, Red-Horse K (2023) Vascular endothelial cell development and diversity. Nat Rev Cardiol 20:197-210. https://doi.org/10.1038/s41569-022-00770-1 
  77. Wu F, Liu L, Zhou H (2017) Endothelial cell activation in central nervous system inflammation. J Leukoc Biol 101:1119-1132. https://doi.org/10.1189/jlb.3RU0816-352RR 
  78. Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53:1473-1486. https://doi.org/10.1161/STROKEAHA.122.036946 
  79. Huang Z, Wong LW, Su Y, Huang X, Wang N, Chen H, Yi C (2020) Blood-brain barrier integrity in the pathogenesis of Alzheimer's disease. Front Neuroendocrinol 59:100857. https://doi.org/10.1016/j.yfrne.2020.100857 
  80. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41-53. https://doi.org/10.1038/nrn1824 
  81. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin - a novel integral membrane-protein localizing at tight junctions. J Cell Biol 123:1777-1788. https://doi.org/10.1083/jcb.123.6.1777 
  82. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131-4142. https://doi.org/10.1091/mbc.11.12.4131 
  83. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939-945. https://doi.org/10.1083/jcb.200510043 
  84. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S (2008) Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19:4687-4693. https://doi.org/10.1091/mbc.E08-05-0530 
  85. Krug SM, Amasheh S, Richter JF, Milatz S, Gunzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713-3724. https://doi.org/10.1091/mbc.E09-01-0080 
  86. Mariano C, Palmela I, Pereira P, Fernandes A, Falcao AS, Cardoso FL, Vaz AR, Campos AR, Goncalves-Ferreira A, Kim KS, Brites D, Brito MA (2013) Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 351:397-407. https://doi.org/10.1007/s00441-012-1529-y 
  87. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185-194. https://doi.org/10.1083/jcb.147.1.185 
  88. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653-660. https://doi.org/10.1083/jcb.200302070 
  89. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117-127. https://doi.org/10.1083/jcb.142.1.117 
  90. Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 201:319-327. https://doi.org/10.1002/path.1434 
  91. Yeung D, Manias JL, Stewart DJ, Nag S (2008) Decreased junctional adhesion molecule- a expression during blood-brain barrier breakdown. Acta Neuropathol 115:635-642. https://doi.org/10.1007/s00401-008-0364-4 
  92. Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493-506. https://doi.org/10.1083/jcb.201412147 
  93. Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630-641. https://doi.org/10.1182/blood.V87.2.630.bloodjournal872630 
  94. Li W, Chen Z, Chin I, Chen Z, Dai H (2018) The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions. Curr Neuropharmacol 16:1375-1384. https://doi.org/10.2174/1570159X16666180222164809 
  95. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for epidermal barrier function by regulating tight junctions. Embo J 24:1146-1156. https://doi.org/10.1038/sj.emboj.7600605 
  96. Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J (2009) Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study. Psychiatry Res 171:232-241. https://doi.org/10.1016/j.pscychresns.2008.04.003 
  97. Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2013) Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging 34:2064-2070. https://doi.org/10.1016/j.neurobiolaging.2013.02.010 
  98. Claudio L, Kress Y, Factor J, Brosnan CF (1990) Mechanisms of edema formation in experimental autoimmune encephalomyelitis. The contribution of inflammatory cells. Am J Pathol 137:1033-1045 
  99. Tsukada N, Matsuda M, Miyagi K, Yanagisawa N (1993) Cytotoxicity of T cells for cerebral endothelium in multiple sclerosis. J Neurol Sci 117:140-147. https://doi.org/10.1016/0022-510x(93)90166-v 
  100. Giulian D (1987) Ameboid microglia as effectors of inflammation in the central-nervous-system. J Neurosci Res 18:155-171. https://doi.org/10.1002/jnr.490180123 
  101. Sun N, Grzybicki D, Castro RF, Murphy S, Perlman S (1995) Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology 213:482-493. https://doi.org/10.1006/viro.1995.0021 
  102. Allen SJ, Baker D, O'Neill JK, Davison AN, Turk JL (1993) Isolation and characterization of cells infiltrating the spinal cord during the course of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Cell Immunol 146:335-350. https://doi.org/10.1006/cimm.1993.1031 
  103. Bolini L, Campos RMP, Spiess DA, Lima-Rosa FL, Dantas DP, Conde L, Mendez-Otero R, Vale AM, Pimentel-Coelho PM (2024) Long-term recruitment of peripheral immune cells to brain scars after a neonatal insult. Glia 72:546-567. https://doi.org/10.1002/glia.24490 
  104. Takata F, Nakagawa S, Matsumoto J, Dohgu S (2021) Bloodbrain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front Cell Neurosci 15:661838. https://doi.org/10.3389/fncel.2021.661838 
  105. Quagliarello VJ, Long WJ, Scheld WM (1986) Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest 77:1084-1095. https://doi.org/10.1172/JCI112407 
  106. Eisenhauer PB, Jacewicz MS, Conn KJ, Koul O, Wells JM, Fine RE, Newburg DS (2004) Escherichia coli Shiga toxin 1 and TNFalpha induce cytokine release by human cerebral microvascular endothelial cells. Microb Pathog 36:189-196. https://doi.org/10.1016/j.micpath.2003.11.004 
  107. Li J, Wang Y, Wang X, Ye L, Zhou Y, Persidsky Y, Ho W (2013) Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages. Blood 121:2934-2942. https://doi.org/10.1182/blood-2012-08-450353 
  108. Rood KM, Patel N, DeVengencie IM, Quinn JP, Gowdy KM, Costantine MM, Kniss DA (2023) Aspirin modulates production of pro-inflammatory and pro-resolving mediators in endothelial cells. PLoS ONE 18:e0283163. https://doi.org/10.1371/journal.pone.0283163 
  109. Zidovetzki R, Chen P, Chen M, Hofman FM (1999) Endothelin-1-induced interleukin-8 production in human brain-derived endothelial cells is mediated by the protein kinase C and protein tyrosine kinase pathways. Blood 94:1291-1299. https://doi.org/10.1182/blood.V94.4.1291.416k33_1291_1299 
  110. Dias MC, Quesada AO, Soldati S, Bosch F, Gruber I, Hildbrand T, Sonmez D, Khire T, Witz G, McGrath JL, Piontek J, Kondoh M, Deutsch U, Zuber B, Engelhardt B (2021) Brain endothelial tricellular junctions as novel sites for T cell diapedesis across the blood-brain barrier. J Cell Sci 134:jcs253880. https://doi.org/10.1242/jcs.253880 
  111. Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and transendothelial migration in the central-nervous-system - the role of Lfa-1, Icam-1, Vla-4 and Vcam-1. Immunology 86:408-415 
  112. Ebefors K, Wiener RJ, Yu L, Azeloglu EU, Yi Z, Jia F, Zhang W, Baron MH, He JC, Haraldsson B, Daehn I (2019) Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int 96:957-970. https://doi.org/10.1016/j.kint.2019.05.007 
  113. Leggett RW (2011) A biokinetic model for manganese. Sci Total Environ 409:4179-4186. https://doi.org/10.1016/j.scitotenv.2011.07.003 
  114. Miner JH (2011) Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol 26:1413-1417. https://doi.org/10.1007/s00467-011-1785-1 
  115. Huang WH, Lin JL (2004) Acute renal failure following ingestion of manganese-containing fertilizer. J Toxicol Clin Toxicol 42:305-307. https://doi.org/10.1081/clt-120037433 
  116. Gao P, Tian Y, Xie Q, Zhang L, Yan Y, Xu D (2020) Manganese exposure induces permeability in renal glomerular endothelial cells via the Smad2/3-Snail-VE-cadherin axis. Toxicol Res (Camb) 9:683-692. https://doi.org/10.1093/toxres/tfaa067 
  117. Bunderson M, Pereira F, Schneider MC, Shaw PK, Cofn JD, Beall HD (2006) Manganese enhances peroxynitrite and leukotriene E4 formation in bovine aortic endothelial cells exposed to arsenic. Cardiovasc Toxicol 6:15-23. https://doi.org/10.1385/ct:6:1:15 
  118. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037-1049. https://doi.org/10.1093/aje/kwi330 
  119. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329-1333. https://doi.org/10.1289/ehp.6964 
  120. Zhuang X, Pang X, Zhang W, Wu W, Zhao J, Yang H, Qu W (2012) Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction. Life Sci 90:131-139. https://doi.org/10.1016/j.lfs.2011.10.025 
  121. Burlet E, Jain SK (2013) Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in Zucker diabetic fatty rats. J Biol Chem 288:6409-6416. https://doi.org/10.1074/jbc.M112.447805 
  122. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853-876 
  123. Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M (2022) Essential metals in health and disease. Chem Biol Interact 367:110173. https://doi.org/10.1016/j.cbi.2022.110173 
  124. Hussain S, Ali SF (1999) Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats. Neurosci Lett 261:21-24. https://doi.org/10.1016/s0304-3940(98)01005-2 
  125. Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23 
  126. Szpetnar M, Luchowska-Kocot D, Boguszewska-Czubara A, Kurzepa J (2016) The influence of manganese and glutamine intake on antioxidants and neurotransmitter amino acids levels in rats' brain. Neurochem Res 41:2129-2139. https://doi.org/10.1007/s11064-016-1928-7 
  127. Rose C, Butterworth RF, Zayed J, Normandin L, Todd K, Michalak A, Spahr L, Huet PM, Pomier-Layrargues G (1999) Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology 117:640-644. https://doi.org/10.1016/s0016-5085(99)70457-9 
  128. Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17:57. https://doi.org/10.1186/s40360-016-0099-0 
  129. Yokel RA, Lasley SM, Dorman DC (2006) The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. J Toxicol Environ Health B Crit Rev 9:63-85. https://doi.org/10.1080/15287390500196230 
  130. Aschner M, Shanker G, Erikson K, Yang J, Mutkus LA (2002) The uptake of manganese in brain endothelial cultures. Neurotoxicology 23:165-168. https://doi.org/10.1016/s0161-813x(02)00056-6 
  131. Fitsanakis VA, Piccola G, Aschner JL, Aschner M (2006) Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood-brain barrier. Neurotoxicology 27:60-70. https://doi.org/10.1016/j.neuro.2005.06.004 
  132. Fitsanakis VA, Piccola G, Aschner JL, Aschner M (2005) Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media. J Neurosci Res 81:235-243. https://doi.org/10.1002/jnr.20560 
  133. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metalion transporter. Nature 388:482-488. https://doi.org/10.1038/41343 
  134. Han M, Chang J, Kim J (2016) Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity. J Neurochem 138:918-928. https://doi.org/10.1111/jnc.13717 
  135. Gunter TE, Gerstner B, Gunter KK, Malecki J, Gelein R, Valentine WM, Aschner M, Yule DI (2013) Manganese transport via the transferrin mechanism. Neurotoxicology 34:118-127. https://doi.org/10.1016/j.neuro.2012.10.018 
  136. Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA (2003) Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology 24:3-13. https://doi.org/10.1016/s0161-813x(02)00089-x 
  137. Steimle BL, Smith FM, Kosman DJ (2019) The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 294:19197-19208. https://doi.org/10.1074/jbc.RA119.009371 
  138. Steimle BL, Bailey DK, Smith FM, Rosenblum SL, Kosman DJ (2022) Calcium and the Ca-ATPase SPCA1 modulate plasma membrane abundance of ZIP8 and ZIP14 to regulate Mn(II) uptake in brain microvascular endothelial cells. J Biol Chem 298:102211. https://doi.org/10.1016/j.jbc.2022.102211 
  139. Micaroni M, Mironov AA (2010) Roles of Ca and secretory pathway Ca-ATPase pump type 1 (SPCA1) in intra-Golgi transport. Commun Integr Biol 3:504-507. https://doi.org/10.4161/cib.3.6.13211 
  140. Leitch S, Feng M, Muend S, Braiterman LT, Hubbard AL, Rao R (2011) Vesicular distribution of Secretory Pathway Ca(2)+-ATPase isoform 1 and a role in manganese detoxification in liver-derived polarized cells. Biometals 24:159-170. https://doi.org/10.1007/s10534-010-9384-3 
  141. Wu J, Li Y, Tian S, Na S, Wei H, Wu Y, Yang Y, Shen Z, Ding J, Bao S, Liu S, Li L, Feng R, Zhu Y, He C, Yue J (2024) CYP1B1 affects the integrity of the blood-brain barrier and oxidative stress in the striatum: An investigation of manganese-induced neurotoxicity. CNS Neurosci Ther 30:e14633. https://doi.org/10.1111/cns.14633 
  142. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332-1341. https://doi.org/10.1021/mp200129p 
  143. Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, De Waziers I, Decleves X (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107:1518-1528. https://doi.org/10.1111/j.1471-4159.2008.05720.x 
  144. Yu X, Wu J, Hu M, Wu J, Zhu Q, Yang Z, Xie X, Feng YQ, Yue J (2019) Glutamate affects the CYP1B1- and CYP2U1-mediated hydroxylation of arachidonic acid metabolism via astrocytic mGlu5 receptor. Int J Biochem Cell Biol 110:111-121. https://doi.org/10.1016/j.biocel.2019.03.001 
  145. Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW (2021) Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 6:94. https://doi.org/10.1038/s41392-020-00443-w 
  146. Marreilha dos Santos AP, Santos D, Au C, Milatovic D, Aschner M, Batoreu MC (2008) Antioxidants prevent the cytotoxicity of manganese in RBE4 cells. Brain Res 1236:200-205. https://doi.org/10.1016/j.brainres.2008.07.125 
  147. dos Santos AP, Milatovic D, Au C, Yin Z, Batoreu MC, Aschner M (2010) Rat brain endothelial cells are a target of manganese toxicity. Brain Res 1326:152-161. https://doi.org/10.1016/j.brainres.2010.02.016 
  148. Liu X, Sullivan KA, Madl JE, Legare M, Tjalkens RB (2006) Manganese-induced neurotoxicity: the role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicol Sci 91:521-531. https://doi.org/10.1093/toxsci/kf150 
  149. Liu Q, Jenkitkasemwong S, Prami TA, McCabe SM, Zhao N, Hojyo S, Fukada T, Knutson MD (2023) Metal-ion transporter SLC39A8 is required for brain manganese uptake and accumulation. J Biol Chem 299:105078. https://doi.org/10.1016/j.jbc.2023.105078 
  150. Da Silva ALC, Urbano MR, Almeida Lopes ACB, Carvalho MFH, Buzzo ML, Peixe TS, Aschner M, Mesas AE, Paoliello MMB (2017) Blood manganese levels and associated factors in a population-based study in Southern Brazil. J Toxicol Environ Health A 80:1064-1077. https://doi.org/10.1080/15287394.2017.1357354 
  151. Vigeh M, Nishioka E, Yokoyama K, Ohtani K, Matsukawa T (2016) Increased prenatal blood manganese may induce gestational blood pressure. Hypertens Pregnancy 35:583-592. https://doi.org/10.1080/10641955.2016.1219364 
  152. Carrasco-Rios M, Ortola R, Sotos-Prieto M, Graciani A, Rodriguez-Artalejo F, Banegas JR, Garcia-Esquinas E (2023) Association of blood manganese concentrations with 24-h based brachial and central blood pressure, and pulse-wave velocity. Environ Res 225:115625. https://doi.org/10.1016/j.envres.2023.115625 
  153. Chen H, Cui Z, Lu W, Wang P, Wang J, Zhou Z, Zhang N, Wang Z, Lin T, Song Y, Liu L, Huang X, Chen P, Tang G, Duan Y, Wang B, Zhang H, Xu X, Yang Y, Qin X, Song F (2022) Association between serum manganese levels and diabetes in Chinese adults with hypertension. J Clin Hypertens (Greenwich) 24:918-927. https://doi.org/10.1111/jch.14520