DOI QR코드

DOI QR Code

A Study on Natural Interspecific Hybrids between Sarcocheilichthys nigripinnis morii and S. variegatus wakiya (Pisces: Cyprinidae)

중고기 Sarcocheilichthys nigripinnis morii와 참중고기 S. variegatus wakiyae (Pisces: Cyprinidae)의 자연 종간잡종에 관한 연구

  • Ji Wang Jang (Natural Environmental Restoration Institute) ;
  • Jae Goo Kim (Alpha Research Ecology Institute) ;
  • Jae Geun Ko (Natural Environmental Restoration Institute) ;
  • Bong Han Yun (Institute of Korea Eco-Network) ;
  • Mu Sung Sung (Muldeuli Research) ;
  • Yang Seop Bae (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • 장지왕 (자연환경복원연구원) ;
  • 김재구 (알파생태연구원) ;
  • 고재근 (자연환경복원연구원) ;
  • 윤봉한 (한국생태네트워크) ;
  • 성무성 (물들이연구소) ;
  • 배양섭 (인천대학교 생명과학과)
  • Received : 2024.06.21
  • Accepted : 2024.09.13
  • Published : 2024.09.30

Abstract

This study conducted morphological and molecular phylogenetic analyses on three presumed natural interspecific hybrids of the genus Sarcocheilichthys, collected from the main stream of the Seomjin River and its tributary, Dongbokcheon Stream, as well as their parent species, S. nigripinnis morii and S. variegatus wakiyae, to identify whether they are natural hybrids and to determine their maternal and paternal species. The results of the molecular phylogenetic analysis clearly demonstrated that the three presumed natural hybrids are indeed natural hybrids of S. nigripinnis morii and S. variegatus wakiyae, with S. nigripinnis morii identified as the maternal species and S. variegatus wakiyae as the paternal species. The three natural hybrids exhibited intermediate or unique morphological traits that were not biased towards either parent species, and distinct morphological characteristics were observed in the dorsal fin and caudal fin. In the water bodies where the natural hybrids were collected, a variety of Acheilognathinae species and spawning hosts coexisted alongside the parent species S. nigripinnis morii and S. variegatus wakiyae. It is presumed that the overlapping spawning periods and locations of S. nigripinnis morii and S. variegatus wakiyae promoted the occurrence of hybrids. The unidirectional occurrence of natural interspecific hybridization is attributed to interspecific competition and population imbalance, and the sneaker behavior of S. variegatus wakiyae males was proposed as an important mechanism.

본 연구는 섬진강 본류와 지류인 동복천에서 채집된 중고기속(genus Sarcocheilichthys) 어류의 자연 종간잡종으로 추정되는 3개체와 부모종인 중고기 S. nigripinnis morii, 참중고기 S. variegatus wakiyae를 대상으로 형태학적 및 분자계통학적 분석을 실시하여 자연잡종 여부를 동정하고, 모계종과 부계종을 판별하였다. 분자계통학적 분석 결과는 자연 종간잡종으로 추정된 3개체가 중고기와 참중고기의 자연잡종임을 명확히 입증하였으며, 모계종은 중고기, 부계종은 참중고기로 밝혀졌다. 자연잡종 3개체는 한 부모종에 편향되지 않는 중간 또는 고유한 형질이 형태적으로 우세하게 발현되었으며, 부모종과 구분되는 고유한 형태적 특성이 등지느러미와 꼬리지느러미에서 확인되었다. 자연잡종이 채집된 수역에서는 부모종인 중고기와 참중고기 외에도 다양한 납자루아과(Acheilognathinae) 어류와 산란숙주가 공존하고 있었다. 중고기와 참중고기의 산란시기와 산란장소 중복이 잡종 발생을 촉진한 것으로 추정되었다. 자연 종간 교잡이 단방향으로 발생한 이유는 동소종 간 경쟁과 개체수 불균형이 원인으로 제시되었으며, 참중고기의 sneaker 행동이 중요한 메커니즘으로 제안되었다.

Keywords

References

  1. Abbott, R., D. Albach, S. Ansell, J.W. Arntzen, S.J.E. Baird, N. Bierne, J. Boughman, A. Brelsford, C.A. Buerkle, R. Buggs, R.K. Butlin, U. Dieckmann, F. Eroukhmanoff, A. Grill, S.H. Cahan, J.S. Hermansen, G. Hewitt, A.G. Hudson, C. Jiggins, J. Jones, B. Keller, T. Marczewski, J. Mallet, P. Martinez-Rodriguez, M. Most, S. Mullen, R. Nichols, A.W. Nolte, C. Parisod, K. Pfennig, A.M. Rice, M.G. Ritchie, B. Seifert, C.M. Smadja, R. Stelkens, J.M. Szymura, R. Vainola, J.B.W. Wolf and D. Zinner. 2013. Hybridization and speciation. Journal of Evolutionary Biology 26(2): 229-246.
  2. Abbott, R.J., N.H. Barton and J.M. Good. 2016. Genomics of hybridization and its evolutionary consequences. Molecular Ecology 25: 2325-2332.
  3. Aboim, M.A., J. Mavarez, L. Bernatchez and M.M. Coelho. 2010. Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. Journal of Evolutionary Biology 23(4): 817-828.
  4. Allendorf, F.W. and R.S. Waples. 1996. Conservation and genetics of salmonid fishes, p. 238-280. In: Conservation Genetics: Case Histories from Nature (Avise, J.C. and J.L. Hamrick, eds.). Chapman and Hall, New York, USA.
  5. Allendorf, F.W., R.F. Leary, P. Spruell and J.K. Wenburg. 2001. The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution 16(11): 613-622.
  6. Armbruster, J.W. 2012. Standardized measurements, landmarks, and meristic counts for cypriniform fishes. Zootaxa 3586(1): 8-16.
  7. Arnold, M.L. 1997. Natural hybridization and evolution. Oxford University Press.
  8. Arnold, M.L. 2004. Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology 13(5): 997-1007.
  9. Arnold, M.L. and A. Meyer. 2006. Natural hybridization in primates: one evolutionary mechanism. Zoology 109(4): 261-276.
  10. Avise, J.C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography 36(1): 3-15.
  11. Baek, H.M. and H.B. Song. 2005. Spawning in mussel and adaptation strategy of Acheilognathus signifer (Cyprinidae: Acheilognathinae). Korean Journal of Ichthyology 17(2): 105-111.
  12. Baker, H.K., D.C. Hankins and J.B. Shurin. 2021. Introgressive hybridization erodes morphological divergence between lentic and lotic habitats in an endangered minnow. Ecology and Evolution 11(19): 13593-13600.
  13. Barton, N.H. and G.M. Hewitt. 1985. Analysis of hybrid zones. Annual Review of Ecology and Systematics 16(1): 113-148.
  14. Billington, N. and P.D. Hebert. 1991. Mitochondrial DNA diversity in fishes and its implications for introductions. Canadian Journal of Fisheries and Aquatic Sciences 48(S1): 80-94.
  15. Bogan, A.E. 1993. Freshwater bivalve extinctions(Mollusca: Unionoida): a search for causes. American Zoologist 33(6): 599-609.
  16. Bohling, J.H. 2016. Strategies to address the conservation threats posed by hybridization and genetic introgression. Biological Conservation 203: 321-327.
  17. Buerkle, C.A., D.E. Wolf and L.H. Rieseberg. 2003. The origin and extinction of species through hybridization, p. 117-141. In: Population viability in plants: Conservation, management, and modeling of rare plants. Berlin, Heidelberg: Springer Berlin Heidelberg.
  18. Burke, J.M. and M.L. Arnold. 2001. Genetics and the fitness of hybrids. Annual Review of Genetics 35(1): 31-52.
  19. Campton, D.E. 1987. Natural hybridization and introgression in fishes: Methods of detection and genetic interpretations, p. 161-192. In: Populations genetics and fishery management (Ryman, N. and F. Utter, eds.). University of Washington Press, Seattle.
  20. Cebrat, M., A. Cebula, A. Laszkiewicz, M. Kasztura, A. Miazek and P. Kisielow. 2008. Mechanism of lymphocyte-specific inactivation of RAG-2 intragenic promoter of NWC: implications for epigenetic control of RAG locus. Molecular Immunology 45(8): 2297-2306.
  21. Chae, B.S., H.B. Song and J.Y. Park. 2019. A field guide to the freshwater fishes of Korea. LG Evergreen Foundation, Seoul, Korea, 355pp.
  22. Chan, W.Y., A.A. Hoffmann and M.J. van Oppen. 2019. Hybridization as a conservation management tool. Conservation Letters 12(5): e12652.
  23. Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModel Test 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
  24. DeMarais, B.D. and W.L. Minckley. 1992. Hybridization in native cyprinid fishes, Gila ditaenia and Gila sp., in northwestern Mexico. Copeia 1992(3): 697-703.
  25. DeMarais, B.D., T.E. Dowling, M.E. Douglas, W.L. Minckley and P.C. Marsh. 1992. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: implications for evolution and conservation. Proceedings of the National Academy of Sciences 89(7): 2747-2751.
  26. Dowling, T.E. and B.D. DeMarais. 1993. Evolutionary significance of introgressive hybridization in cyprinid fishes. Nature 362(6419): 444-446.
  27. Dowling, T.E. and C.L. Secor. 1997. The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics 28(1): 593-619.
  28. Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792-1797.
  29. Edelman, N.B. and J. Mallet. 2021. Prevalence and adaptive impact of introgression. Annual Review of Genetics 55: 265-283.
  30. Freyhof, J., D. Lieckfeldt, C. Pitra and A. Ludwig. 2005. Molecules and morphology: evidence for introgression of mitochondrial DNA in Dalmatian cyprinids. Molecular Phylogenetics and Evolution 37(2): 347-354.
  31. Gilles, A., C. Costedoat, B. Barascud, A. Voisin, P. Banarescu, P.G. Bianco, P.G. Economidis, D. Maric and R. Chappaz. 2010. Speciation pattern of Telestes souffia complex (Teleostei, Cyprinidae) in Europe using morphological and molecular markers. Zoologica Scripta 39(3): 225-242.
  32. Gu, Z., Y. Jia, J. Ye, L. Chen, J. Zhu, X. Huang and Y. Yang. 2008. Studies on morphological characteristics and genetic analysis of the hybrid F1, Erythroculter ilishaeformis♂×Megalobrama amblycephala♀. Journal of Fisheries of China 32(4): 533-544.
  33. Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5): 696-704.
  34. Hata, H., Y. Uemura and K. Ouchi. 2021. Decline of unionid mussels enhances hybridisation of native and introduced bitterling fish species through competition for breeding substrate. Freshwater Biology 66(1): 189-201.
  35. Hata, H., Y. Uemura, K. Ouchi and H. Matsuba. 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression. PLoS One 14(2): e0212452.
  36. Horreo, J.L., F. Ayllon, J. Perez, E. Beall and E. Garcia-Vazquez. 2011. Interspecific hybridization, a matter of pioneering? Insights from Atlantic salmon and brown trout. Journal of Heredity 102(2): 237-242.
  37. Hubbs, C.L. 1955. Hybridization between fish species in nature. Systematic Zoology 4(1): 1-20.
  38. Hubbs, C.L. and K.F. Lagler. 2004. Fishes of the Great Lakes region, revised edition, revised edition. The Unversity of Michigan Press, USA.
  39. Hwang, Y.J., M.S. Ra and C.G. Choi. 1995. A natural hybrid between spinous loach, Cobitis longicorpus and cyprinid loach Misgurunus anguilicaudatus (Pices, Cobitidae). Korean Journal of Ichthyology 7(2): 203-207.
  40. Ingman, M. and U. Gyllensten. 2006. Vertebrate Mitochondrial DNA. In: Reviews in Cell Biology and Molecular Medicine (Meyers, R.A. ed.). https://doi.org/10.1002/3527600906.mcb.200500057
  41. Irwin, D.M., T.D. Kocher and A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32: 128-144.
  42. Jansson, H., I. Holmgren, K. Wedin and T. Anderson. 1991. High frequency of natural hybrids between Atlantic salmon, Salmo salar L., and brown trout, S. trutta L., in a Swedish river. Journal of Fish Biology 39: 343-348.
  43. Jerry, D.R., T.A. Raadik, S.C. Cairns and P.R. Baverstock. 1999. Evidence for natural interspecific hybridization between the Australian bass (Macquaria novemaculeata) and estuary perch (M. colonorum). Marine and Freshwater Research 50(7): 661-666.
  44. Kang, E.J., H. Yang, H.H. Lee, E.O. Kim and C.H. Kim. 2007. Characteristics on spawning-host selection and early life history of Sarcocheilichthys nigripinis morii(Pisces, Cyprinidae). Korean Journal of Environmental Biology 25(4): 370-377.
  45. Kim, C.H., W.O. Lee, Y.J. Kang and J.M. Baek. 2010. Occurrence of a Natural Intergeneric Hybrid, Rhodeus uyekii×Acheilognathus signifer (Pisces: Cyprinidae) from Jojongcheon Bukhan River. Korean Journal of Ichthyology 22(4): 225-229.
  46. Kim, H.S. 2014. Spawning ecology and conservation of the Korean bitterling, Acheilognathus signifer (Cyprinidae) (Doctoral dissertation, PhD Thesis, Chonbuk National University, Jeonju, Korea).
  47. Kim, H.S., S.W. Yun, J.G. Ko and J.Y. Park. 2014a. Occurrence of a natural intergeneric hybrid between Rhodeus pseudosericeus and Acheilognathus signifer (Pisces: Cyprinidae) from the Namhangang (river), Korea. Korean Journal of Ichthyology 26(3): 153-158.
  48. Kim, H.S., J.D. Yoon, H. Yang and J.Y. Park. 2014b. Host mussel utilization for spawning of the oily shinner, Sarcocheilichthys variegatus wakiyae (Pisces: Cyprinidae), inhabiting the Dalcheon, Namhangang (river) from Korea. Korean Journal of Ichthyology 26(4): 288-294.
  49. Kim, H.S., S.W. Yun, H.T. Kim and J.Y. Park. 2015a. Occurrence of a natural hybrid between Acheilognathus signifer and A. lanceolatus (Pisces: Cyprinidae). Korean Journal of Ichthyology 27(3): 199-204.
  50. Kim, H.S., J.G. Ko, W.S. Choi and J.Y. Park. 2015b. Population ecology of Korean rose bitterling, Rhodeus uyekii (Pisces: Acheilognathinae) in the Bongseocheon, Mankyeonggang (river), Korea. Korean Journal of Ichthyology 27(2): 78-85.
  51. Kim, I.S. 1997. Illustrated encyclopedia of fauna & flora of Korean Vol. 37 Freshwater Fishes. Korea Ministry of Education, Seoul, 629pp.
  52. Kim, I.S. and C.L. Lee. 1984. Review of the classification of the cyprinid, genus Sarcocheilichthys from Korea. Korean Journal of Limnology 17(1): 57-64.
  53. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing, Seoul, 615pp.
  54. Kim, K.Y. and I.C. Bang. 2010. Molecular phylogenetic position of Abbottina springeri (Cypriniformes: Cyprinidae) based on nucleotide sequences of RAG1 gene. Korean Journal of Ichthyology 22(4): 273-278.
  55. Kim, K.Y., M.H. Ko, S.J. Cho, W.J. Kim, M.H. Son and I.C. Bang. 2015c. A natural hybrid of intergeneric mating between a female Pungtungia herzi and a male Pseudorasbora parva (Cypriniformes: Cyprinidae). Fisheries and Aquatic Sciences 18(1): 99-107.
  56. Kim, P., J.H. Han and S.L. An. 2020. Genetic identification of species and natural hybridization determination based on mitochondrial DNA and nuclear DNA of genus Zacco in Korea. Mitochondrial DNA Part A 31(6): 221-227.
  57. Kim, Y.H. 2020. Phylogeny and molecular evolution of the genus Sarcocheilichthys (Teleostei: Cypriniformes) from Korea. Soonchunhyang University, Asan.
  58. Kim, Y.H., M.S. Sung, B.H. Yun and I.C. Bang. 2021. Occurrence of a natural intergeneric hybrid between a female Tanakia lanceolata and a male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon stream flowing into the Yellow Sea in the Republic of Korea. Korean Journal of Ichthyology 33(2): 45-56.
  59. Kirczuk, L. and J. Domagala. 2011. Morphometric characterization of reciprocal hybrids of Atlantic salmon, Salmo salar L., and sea trout, Salmo trutta L., in the freshwater period of life. Fisheries & Aquatic Life 19(4): 285-295.
  60. Kwak, Y.H., K.Y. Kim, K.S. Kim and H.Y. Song. 2020. Occurrence of a natural interspecific hybrid between Rhodeus pseudosericeus and R. notatus in Sangcheon Stream of the Han River, Korea. Korean Journal of Ecology and Environment 53(3): 275-285.
  61. Kwan, Y.S., M.H. Ko and Y.J. Won. 2014. Genomic replacement of native Cobitis lutheri with introduced C. tetralineata through a hybrid swarm following the artificial connection of river systems. Ecology and Evolution 4(8): 1451-1465.
  62. Kwan, Y.S., M.H. Ko, Y.S. Jeon, H.J. Kim and Y.J. Won. 2018. Bidirectional mitochondrial introgression between Korean cobitid fish mediated by hybridogenetic hybrids. Ecology and Evolution 9(3): 1244-1254.
  63. Kwon, O.K. 1990. Illustrated encyclopedia of fauna & flora of Korean Vol. 32 MOLLUSCA (I). Korea Ministry of Education, Seoul, 446pp.
  64. Leary, R.F. 1995. Hybridization and introgression between introduced and native fish. American Fisheries Society Symposium 15: 91-101.
  65. Lee, I.R., H. Yang, J.H. Kim, K.Y. Kim and I.C. Bang. 2009. Identification of a natural hybrid between the striped spine loach Cobitis tetralineata and the king spine loach Iksookimia longicorpa by analyzing mitochondrial COI and nuclear RAG1 sequences. Korean Journal of Ichthyology 21(4): 287-290.
  66. Lee, J.S. and D.K. Min. 2019. Non-Marine Mollusks of Korea. Slow & Steady Publishing Co, Seoul, Korea, 198pp.
  67. Lehtinen, R.M., A.F. Steratore, M.M. Eyre, E.S. Cassagnol, M.L. Stern and H.A. Edgington. 2016. Identification of widespread hybridization between two terrestrial salamanders using morphology, coloration, and molecular markers. Copeia 104(1): 132-139.
  68. Levin, D.A., J. Francisco-Ortega and R.K. Jansen. 1996. Hybridization and the extinction of rare plant species. Conservation Biology 10(1): 10-16.
  69. Li, W., A.F. Averette, M. Desnos-Ollivier, M. Ni, F. Dromer and J. Heitman. 2012. Genetic diversity and genomic plasticity of Cryptococcus neoformans AD hybrid strains. G3: Genes| Genomes| Genetics 1: 83-97.
  70. Liu, Q., X. Zhang, J. Liu, F. Liu, F. Shi, Q. Qin, M. Tao, C. Tang and S. Liu .2021. A new type of allodiploid hybrids derived from female Megalobrama amblycephala×male Gobiocypris rarus. Frontiers in Genetics 12: 685914.
  71. Mallet, J. 2005. Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20(5): 229-237.
  72. Mallet, J. 2007. Hybrid speciation. Nature 446(7133): 279-283.
  73. MolluscaBase eds. 2024. MolluscaBase. Accessed at https://www.molluscabase.org on 2024-06-10. https://doi.org/10.14284/448
  74. Muhlfeld, C.C., T.E. McMahon, D. Belcer and J.L. Kershner. 2009. Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids. Canadian Journal of Fisheries and Aquatic Sciences 66(7): 1153-1168.
  75. NIBR(National Institute of Biological Resources). 2019a. Invertebrate fauna of Korea. v.19, n.7, Bivalves III: Mollusca: Bivalvia: Unionoida: Unionidae Veneroida: Kelliellidae, Trapeziidae, Cyrenidae, Glauconomidae, Sphaeriidae, Glossidae, Veneridae. Incheon, Korea.
  76. NIBR(National Institute of Biological Resources). 2019b. Red data book of Republic of Korea, Volume 3. Freshwater fishes. Ministry of Environment, National institute of Biological Resources, Incheon, Korea, 250pp.
  77. Niedzicka, M.E., B.M. Glowacki, P. Zielinski and W. Babik. 2020. Morphology is a poor predictor of interspecific admixture - the case of two naturally hybridizing newts Lissotriton montandoni and Lissotriton vulgaris(Caudata: Salamandridae). Amphibia-Reptilia 41(4): 489-500.
  78. Nikoljukin, M.J. 1972. Distant hybridization in Acipenseridae and Teleostei, theory and practice, Moscow.
  79. Pacheco, N.M., B.C. Congdon and V.L. Friesen. 2002. The utility of nuclear introns for investigating hybridization and genetic introgression: a case study involving Brachyramphus murrelets. Conservation Genetics 3: 175-182.
  80. Peitts, C.S., D.R. Jordan, I.G. Cowx and N.V. Jones. 1997. Controlled breeding studies to verify the identity of roach and common bream hybrids from a natural population. Journal of Fish Biology 51(4): 686-696.
  81. Perez, J., J.L. Martinez, P. Moran, E. Beall and E. Garcia-Vazquez. 1999. Identification of Atlantic salmon×brown trout hybrids with a nuclear marker useful for evolutionary studies. Journal of Fish Biology 54(2): 460-464.
  82. Perry, W.L., D.M. Lodge and J.L. Feder. 2002. Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to North American biodiversity. Systematic Biology 51(2): 255-275.
  83. Pinheiro, A.P.B., R.M.C. Melo, D.F. Teixeira, J.L.O. Birindelli, D.C. Carvalho and E. Rizzo. 2019. Integrative approach detects natural hybridization of sympatric lambaris species and emergence of infertile hybrids. Scientific Reports 9(1): 4333.
  84. Polyakova, N.E., A.V. Semina and V.A. Brykov. 2015. Analysis of mtDNA and nuclear markers points to homoploid hybrid origin of the new species of Far Eastern redfins of the genus Tribolodon (Pisces, Cyprinidae). Russian Journal of Genetics 51: 1075-1087.
  85. Rambaut, A. 2018. FigTree. Version 1.4.4. Available at: http://tree.bio.ed.ac.uk/software-/figtree.
  86. Rambaut, A., A.J. Drummond, D. Xie, G. Baele and M.A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901-904.
  87. Randall, J.E. 1956. Acanthurus rackliffei, a possible hybrid surgeon fish (A. Achilles×A. glaucopareius) from the Phoenix Islands. Copeia 1956: 21-25.
  88. Rhymer, J.M. and D. Simberloff. 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27(1): 83-109.
  89. Rieseberg, L.H., S. Zona, L. Aberbom and T.D. Martin. 1989. Hybridization in the island endemic, Catalina mahogany. Conservation Biology 3(1): 52-58.
  90. Ronquist, F., M. Teslenko, P. Van Der Mark, D.L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M.A. Suchard and J.P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542.
  91. Ross, M.R. and T.M. Cavender. 1981. Morphological analyses of four experimental intergeneric cyprinid hybrid crosses. Copeia 2: 377-387.
  92. Samarasinghe, H., M. You, T.S. Jenkinson, J. Xu and T.Y. James. 2020. Hybridization facilitates adaptive evolution in two major fungal pathogens. Genes 11(1): 101.
  93. Santos-Santos, J.H., L. Audenaert, E. Verheyen and D. Adriaens. 2021. Ontogenetic divergence generates novel phenotypes in hybrid cichlids. Journal of Anatomy 238(5): 1116-1127.
  94. Schwenk, K., N. Brede and B. Streit. 2008. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1505): 2805-2811.
  95. Scribner, K.T., K.S. Page and M.L. Bartron. 2001. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Reviews in Fish Biology and Fisheries 10: 293-323.
  96. Seehausen, O. 2004. Hybridization and adaptive radiation. Trends in Ecology & Evolution 19(4): 198-207.
  97. Smith, G.R. 1992. Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates. Systematic Biology 41(1): 41-57.
  98. Song, H.B. and O.K. Kwon. 1994. Spawning of the bitterling, Acheilognathus yamatsutae (Cyprinidae) into the mussel. Korean Journal of Ichthyology 6(1): 39-50.
  99. Song, H.Y., J.H. Kim, I.Y. Seo and I.C. Bang. 2017. Species and hybrid identification of Genus Coreoleuciscus species in Hwnag-ji Stream, Nakdong River basin in Korea. Korean Journal of Ichthyology 29(1): 1-12.
  100. Sonnenberg, R., A. Nolte and D. Tautz. 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4: 1-12.
  101. Soric, V.M. 2004. A natural hybrid of Leuciscus cephalus and Alburnus alburnus (Pisces, Cyprinidae) from the Ibar River, Western Serbia. Archives of Biological Sciences 56(1-2): 23-32.
  102. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313.
  103. Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends in Ecology & Evolution 15(5): 199-203.
  104. Taylor, S.A. and E.L. Larson. 2019. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nature Ecology & Evolution 3(2): 170-177.
  105. Uemura, Y., S. Yoshimi and H. Hata. 2018. Hybridization between two bitterling fish species in their sympatric range and a river where one species is native and the other is introduced. PLoS One 13(9): e0203423.
  106. unver, B., H. Tatlidil and F. Erk'akan. 2008. Biometrical features of intergeneric hybrid between Leuciscus cephalus(L.) and Chalcalburnus chalcoides (G.) (Osteichthyes-Cyprinidae) distributed in Lake Todurge (Sivas-Turkey). Turkish Journal of Fisheries and Aquatic Sciences 8(2): 207-213.
  107. Verspoor, E. and J. Hammar. 1991. Introgressive hybridization in fishes: the biochemical evidence. Journal of Fish Biology 39: 309-334.
  108. Vila, C., C. Walker, A.K. Sundqvist, O. Flagstad, Z. Andersone, A. Casulli, I. Kojola, H. Valdmann, J. Halverson and H. Ellegren. 2003. Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolfdog hybrids. Heredity 90(1): 17-24.
  109. Vilaca, S.T. and F.R.D. Santos. 2013. Molecular data for the sea turtle population in Brazil. Dataset Papers in Science 2013: 1-7.
  110. Vuillaume, B., V. Valette, O. Lepais, F. Grandjean and M. Breuil. 2015. Genetic evidence of hybridization between the endangered native species Iguana delicatissima and the invasive Iguana iguana (Reptilia, Iguanidae) in the Lesser Antilles: management implications. PLoS One 10(6): e0127575.
  111. Wang, J., G. Yang and G. Zhou. 2013. Quantitative trait loci for morphometric body measurements of the hybrids of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Acta Biologica Hungarica 64: 169-183.
  112. Watters, G.T. 1996. Small dams as barriers to freshwater mussels (Bivalvia, Unionoida) and their hosts. Biological Conservation 75(1): 79-85.
  113. Witkowski, A., J. Kotusz, K. Wawer, J. Stefaniak, M. Popiolek and J. Blachuta. 2015. A natural hybrid of Leuciscus leuciscus(L.) and Alburnus alburnus(L.)(Osteichthyes: Cyprinidae) from the Bystrzyca River (Poland). Annales Zoologici 65(2): 287-293.
  114. Yang, H. 2004. Ecology and speciation of two Korean bitterlings, Acheilognathus koreensis and A. somjinensis (Pisces: Cyprinidae) from Korea. Ph. D. dissertation, Chonbuk Natlional University. Jeonju, Korea.
  115. Yoon, J.D. 2016. Oviposition-Host selection and oviposition charac teristic of Sarcocheilichthys variegatus wakiyae (Cyprinidae: Gobioninae). Master Thesis, Kunsan National University, 35pp.
  116. Yun, B.H., M.S. Sung, Y.H. Kim and I.C. Bang. 2021. A study on the natural interspecific hybrid between Rhodeus notatus and R. ocellatus. Korean Journal of Ichthyology 33(3): 157-166.
  117. Zbinden, Z.D., M.R. Douglas, T.K. Chafin and M.E. Douglas. 2023. A community genomics approach to natural hybridization. Proceedings of the Royal Society B 290(1999): 20230768.