DOI QR코드

DOI QR Code

Study on Improving the Accuracy of Mobile Air Quality Monitoring Systems

  • Jong-Sun CHOI (Korea EMC Co., Ltd.) ;
  • Woo-Taeg KWON (Department of Environmental Health & Safety, Eulji University) ;
  • Woo-Sik LEE (Dept. of Chemical & Biological Engineering, Gachon University)
  • 투고 : 2024.09.19
  • 심사 : 2024.10.02
  • 발행 : 2024.12.30

초록

Purpose: The purpose of this study is to develop a highly accurate mobile air quality monitoring system suitable for use in various event-specific locations, such as fireworks festivals or construction sites. Research design, data and methodology: The study focuses on optimizing the selection and design of equipment for a mobile air quality monitoring system, aiming to reduce production costs and improve measurement accuracy. It includes a comparative analysis with existing Air Quality Monitoring Stations (AQMS) and enhances calibration methods to stabilize performance under various environmental conditions. This approach ensures a cost-effective, accurate, and efficient mobile air quality monitoring system. Results: By utilizing measurement data collected from various regions, further improvements can be made in the future to develop a more efficient and accurate mobile air quality monitoring system. The accuracy of the existing mobile air quality monitoring system has been enhanced through this study, making it applicable for measurements in various fields. Conclusions: With the growing concern about air pollution, a mobile air quality monitoring system could be effectively utilized in areas where event-based air pollution occurs, such as firework festivals or construction sites. In the future, by utilizing data from various regions, further improvements and enhancements can be made to the system, leading to a more efficient and accurate mobile air quality monitoring system.

키워드

참고문헌

  1. Andersen, M. E., MacNaughton, M. G., & Clewell, H. J. (1998). exposure indices for 1992-l 993. American Conference of Governmental Industrial Hygienists. Cincinnati, OH.* ACGIH. 1998. Threshold limit values for chemical substances and physical agents. Biological exposure Indices. 1998 TLVs and BEIs. American Conference of Governmental Industrial Hygienists. March 1, 1998. Health, 10, 541-550.
  2. Choi, J. W., Zaman, M. W. U., Ko, Y. J., & Yang, J. H. (2023). A Study on the Distribution of VOCs Characteristics in Industrial Complexes in the Central Region using SIFT-MS and Drone Measurement Equipment. Journal of the Korean Society of Urban Environment, 23(3), 105-121. https://doi.org/10.33768/ksue.2023.23.3.105
  3. Do, W. G., Jung, W. S., Yoo, E. C., & Kwak, J. (2013). An Investigation into Air Quality of Main Roads in Busan using Mobile Platform Measurement. Journal of Environmental Science International, 22(9), 1199-1211.
  4. Elen, B., Peters, J., Van Poppel, M., Bleux, N., Theunis, J., Reggente, M., & Standaert, A. (2012). The Aero-flex: a bicycle for mobile air quality measurements. Sensors, 13(1), 221-240. https://doi.org/10.3390/s130100221
  5. EPA. (2023a). 40 CFR Appendix M, Part 50, Reference method for the determination of Particulate Matter as PM10 in the Atmosphere
  6. EPA. (2023b). EPA/625/R-96/010A Compendium Method IO-1&2, 1.2, 2.2, 2.3
  7. Finkelstein, P. L. (1976). Quality Assurance Handbook for Air Pollution Measurement Systems. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory.
  8. Ghim, Y. S., & Kim, C. H. (2013). Regional Trends in Short-Term High Concentrations of Criteria Pollutants from National Air Monitoring Stations. Journal of Korean Society for Atmospheric Environment, 29(5), 545-552. https://doi.org/10.5572/KOSAE.2013.29.5.545
  9. Han, B., Kwak, K., & Baik, J. (2016). Diurnal Variations of O3 and NO2 Concentrations in an Urban Park in Summer: Effects of Air Temperature and Wind Speed. Journal of Korean Society for Atmospheric Environment, 32(5), 536-546. https://doi.org/10.5572/KOSAE.2016.32.5.536
  10. Han, S. H., & Kim, Y. P. (2015). Long-term Trends of the Concentrations of Mass and Chemical Composition in PM 2.5 over Seoul. Journal of Korean Society for Atmospheric Environment, 31(2), 143-156. https://doi.org/10.5572/KOSAE.2015.31.2.143
  11. Hinds, W. C., & Zhu, Y. (2022). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons.
  12. Ju, J., & Hwang, I. (2011). A Study for Spatial Distribution of Principal Pollutants in Daegu Area Using Air Pollution Monitoring Network Data. Journal of Korean Society for Atmospheric Environment, 27(5), 545-557. https://doi.org/10.5572/KOSAE.2011.27.5.545
  13. KEITI. (2018). Development of an ultrafine dust measuring system using beta-ray absorption method capable of automatic weight concentration correction Final report. (R&D2015001860002)
  14. Kim, D., & Park, J. (2020). Problems and Improvements in the Quality Control of the Air Monitoring Network. Journal of Environmental Science International, 29(8), 847-855.
  15. Kim, J. B., Kim, C. H., Noh, S., Hwang, E. Y., Park, D. S., Lee, J. J., & Kim, J. (2021). A study on spatial distribution characteristics of air pollutants in Bucheon-si using mobile laboratory. PARTICLE AND AEROSOL RESEARCH, 17(1), 9-20. https://doi.org/10.11629/JPAAR.2021.17.1.009
  16. Kim, K., Lee, C., Choi, D., Joo, H., Hong, Y., Kim, S., Lee, G., Park, J., Park, J., & Han, J. (2023). Historical Changes of Air Quality Standards and Air Pollution of Korea, and Challenges for Their Improvements. Journal of Korean Society for Atmospheric Environment, 39(5), 807-829, 10.5572/KOSAE.2023.39.5.807
  17. Kim, M., Lim, Y., Song, I., Kim, M., Song, M., Oh, S., Lee, T., Song, M., & Bae, M. (2021). Spatial Analysis of Ammonia from Vehicle Measurement in Seoul. Journal of Korean Society for Atmospheric Environment, 37(4), 637-646. https://doi.org/10.5572/KOSAE.2021.37.4.637
  18. Kim, S. (2020). Analysis of the factors influencing PM2.5 Concentration. Journal of The Korean Data Analysis Society, 22(4), 1335-1347. https://doi.org/10.37727/jkdas.2020.22.4.1335
  19. Lee, H., Jeong, Y., Kim, S., & Lee, W. (2018). Atmospheric Circulation Patterns Associated with Particulate Matter over South Korea and Their Future Projection. Journal of Climate Change Research, 9(4), 423-433, 10.15531/ksccr.2018.9.4.423
  20. Lee, M., Choi, D., & Kim, K. (2022). Comparative Evaluation between Particulate Matter Concentrations in Rural Villages in Wanju-gun and the Air Pollution Monitoring Network. The Korean Journal of Community Living Science, 33(1), 139-148, 10.7856/kjcls.2022.33.1.139
  21. Lee, S. H., Kim, H. S., Park, J. H., & Woo, S. (2012). On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory. Transactions of the Korean Society of Mechanical Engineers - B, 36(7), 737-744. https://doi.org/10.3795/KSME-B.2012.36.7.737
  22. Ma, C., & Kang, G. (2023). A Study on the Air Pollution Status and Health Effects in Tokyo. Journal of Korean Society for Atmospheric Environment, 39(4), 469-477, 10.5572/KOSAE.2023.39.4.469
  23. Ma, Y., Kim, K., Kim, M., & Sunwoo, Y. (2004). Factors Controlling Relationships between PM2.5 and PM10 at Mt. Namsan Area in Seoul. Seoul Studies, 5(3), 117-126. https://doi.org/10.23129/SEOULS.5.3.200409.117
  24. MOE (2012). Framework Act On Environmental Policy, Act NO. 19208.
  25. MOE.NIER (2022). Guidelines for Establishment and Operation of Air Quality Monitoring Network, 11-1480523-004654-01, 1-677.
  26. NIER. (2023). Standard Methods for Examination of Air. ES01605.1b, ES01606.2b, ES01601.1, ES01602.1, ES01603.1, ES01607.1a
  27. Oh, S., Kim, J. Y., Won, S. R., Kwon, S., Lee, S., Choi, S., Lee, J. Y., & Shin, H. J. (2023). Comparison of the Chemical Characteristics and Source Apportionment of PM1.0 and PM2.5 Using Real-time Air Quality Monitoring Network Data of Air Pollutants. Journal of Korean Society for Atmospheric Environment, 39(4), 448-468, 10.5572/KOSAE.2023.39.4.448
  28. Park, G., & Lee, B. (2015). Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan. Journal of Korean Society for Atmospheric Environment, 31(3), 287-301. https://doi.org/10.5572/KOSAE.2015.31.3.287
  29. Park, S. H. (2023). Box Model Applications for Atmospheric Chemistry Research: Photochemical Reactions and Ozone Formation. Journal of Korean Society for Atmospheric Environment, 39(5), 627-660, 10.5572/KOSAE.2023.39.5.627
  30. Park, S. H., Kim, S. C., & Kim, D. S. (2022). A Study on the Characteristics of Local Air Pollutants According to the Analysis of Gunsan Air Pollutnats Network Data (2017-2019). Journal of Korean Society for Atmospheric Environment, 38(3), 421-436. https://doi.org/10.5572/KOSAE.2022.38.3.421
  31. Ryoo, J., Kwon, T., Kang, I., Lee, K., Jo, C., Kim, J., Kim, H., Jang, W., Park, J., & Yoo, T. (2019). A Study for Characteristics of Fine Particulate Matter and Atmospheric Stagnation Considering Elevation and Backward Trajectory. Journal of Korean Society for Atmospheric Environment, 35(6), 701-712, 10.5572/KOSAE.2019.35.6.701
  32. Samad, A., & Vogt, U. (2020). Investigation of urban air quality by performing mobile measurements using a bicycle (MOBAIR). Urban Climate, 33, 100650.
  33. Son, J., Kim, J., Park, G., Kim, S., Hong, H., Moon, S., Park, T., Kang, S., Sung, K., Chung, T., Kim, I., Kim, K., Yu, D., Choi, K., Kim, J. S., & Lee, T. (2016). Physicochemical Characteristics of Particulate Matter Emissions of Different Vehicles' Fuel Types. Journal of Korean Society for Atmospheric Environment, 32(6), 593-602. https://doi.org/10.5572/KOSAE.2016.32.6.593