DOI QR코드

DOI QR Code

Germination and seedling growth of closely related native and invasive legume trees in Nepal

  • Anuj Dangol (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Ashmita Shrestha (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Hemanti Airi (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Nisha Kharel (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Lal Bahadur Thapa (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Anjana Devkota (Central Department of Botany, Institute of Science and Technology, Tribhuvan University) ;
  • Bharat Babu Shrestha (Central Department of Botany, Institute of Science and Technology, Tribhuvan University)
  • Received : 2024.03.18
  • Accepted : 2024.06.26
  • Published : 2024.09.30

Abstract

Background: This study compares seed germination and seedling growth parameters of native Senegalia catechu with its closely related invasive Leucaena leucocephala in Nepal. For the comparison of seed germination percentage (GP), mean germination time (MGT), and Timson's index (TI), the seeds of both species were incubated under different light (photoperiod and dark), temperatures (30/20℃ and 25/15℃) and water stress conditions (-0.1, -0.25, -0.5, -0.75, and -1 MPa). The seedling emergence from different soil depths was also evaluated. The relative growth rate (RGR), root mass fraction (RMF), stem mass fraction, leaf mass fraction (LMF), and root-to-shoot ratio (RSR) of seedlings were also measured. Results: The seed length and mass of invasive L. leucocephala were higher than that of native S. catechu. The GP of S. catechu was higher at high temperature and photoperiod comparing to L. leucocephala. There was no difference in GP between two species under other light and temperature conditions. The MGT of S. catechu was shorter than that of L. leucocephala at both temperatures. Senegalia catechu exhibited higher TI than L. leucocephala, particularly at high temperatures. Water stress above -0.5 MPa reduced the GP and TI of both species and it was more pronounced in S. catechu than L. leucocephala. The seedling emergence percentage of L. leucocephala was higher than that of S. catechu. Both species exhibited comparable RGR and biomass allocations (RMF, LMF, and RSR). However, L. leucocephala had always greater values of shoot height, root length, leaf number and seedling biomass compared to S. catechu. Conclusions: Larger seeds may not always lead to higher seed GP. Some, but not all, seed germination and seedling growth traits can be useful to characterize invasive alien plant species. Invasiveness of L. leucocephala could be attributed to relatively high tolerance of seed germination to water stress, capacity to germinate from deeper soil, and larger seedling size compared to the confamilial native species.

Keywords

Acknowledgement

We are thankful to Prithvi Narayan Shrestha (The Open University, UK) for improving English language of the manuscript.

References

  1. Ansari TN, Iqbal S, Barhanpurkar S. Ecofriendly dyeing with Senegalia catechu using biomordant. Int J Creat Res Thoughts. 2018;6(1):1351-4. 
  2. Bakewell-Stone P. Leucaena leucocephala (leucaena). 2023. https://www.cabidigitallibrary.org/doi/epdf/10.1079/cabicompendium.31634. Accessed 12 Mar 2024. 
  3. Baruch Z, Goldstein G. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia. 1999;121(2):183-92. https://doi.org/10.1007/s004420050920. 
  4. Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed. San Diego: Elsevier; 2014.
  5. Burns JH. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Divers Distrib. 2004;10(5-6):387-97. https://doi.org/10.1111/j.1366-9516.2004.00105.x. 
  6. Chauhan BS, Johnson DE. Seed germination and seedling emergence of giant sensitiveplant (Mimosa invisa). Weed Sci. 2008;56(2):244-8. https://doi.org/10.1614/WS-07-120.1. 
  7. Chauhan BS, Johnson DE. Germination, emergence, and dormancy of Mimosa pudica. Weed Biol Manag. 2009;9(1):38-45. https://doi.org/10.1111/j.1445-6664.2008.00316.x. 
  8. Daehler CC. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst. 2003;34:183-211. 
  9. Dawson W, Fischer M, van Kleunen M. The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Glob Ecol Biogeogr. 2011;20(2):299-306. https://doi.org/10.1111/j.1466-8238.2010.00599.x. 
  10. de Sousa Machado MT, Drummond JA, Barreto CG. Leucaena leucocephala (Lam.) de Wit in Brazil: history of an invasive plant. Estud Ibero-Am. 2020;46(1):e33976. https://doi.org/10.15448/1980-864X.2020.1.33976. 
  11. Dhakal A, Maraseni TN, Timsina J. Assessing the potential of agroforestry in Nepal: socio-economic and environmental perspectives. In: Timsina J, Maraseni TN, Gauchan D, Adhikari J, Ojha H, editors. Agriculture, natural resources and food security. Cham: Springer; 2022. p. 375-94. 
  12. Dhanda S, Chauhan BS. Seed germination ecology of leucaena (Leucaena leucocephala) as influenced by various environmental parameters. Weed Sci. 2022;70(3):335-40. https://doi.org/10.1017/wsc.2022.18. 
  13. Ebrahimi E, Eslami SV. Effect of environmental factors on seed germination and seedling emergence of invasive Ceratocarpus arenarius. Weed Res. 2012;52(1):50-9. https://doi.org/10.1111/j.1365-3180.2011.00896.x. 
  14. Feng Y, Wang J, Sang W. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecol. 2007;31(1):40-7. https://doi.org/10.1016/j.actao.2006.03.009. 
  15. Fournier A, Penone C, Pennino MG, Courchamp F. Predicting future invaders and future invasions. Proc Natl Acad Sci U S A. 2019;116(16):7905-10. https://doi.org/10.1073/pnas.1803456116. 
  16. Gareca EE, Vandelook F, Fernandez M, Hermy M, Honnay O. Seed germination, hydrothermal time models and the effects of global warming on a threatened high Andean tree species. Seed Sci Res. 2012;22(4):287-98. https://doi.org/10.1017/S0960258512000189. 
  17. Gioria M, Pysek P. Early bird catches the worm: germination as a critical step in plant invasion. Biol Invasions. 2017;19:1055-80. https://doi.org/10.1007/s10530-016-1349-1. 
  18. Gravuer K, Sullivan JJ, Williams PA, Duncan RP. Strong human association with plant invasion success for Trifolium introductions to New Zealand. Proc Natl Acad Sci U S A. 2008;105(17):6344-9. https://doi.org/10.1073/pnas.0712026105. 
  19. Grotkopp E, Erskine-Ogden J, Rejmanek M. Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. J Appl Ecol. 2010;47(6):1320-8. https://doi.org/10.1111/j.1365-2664.2010.01878.x. 
  20. Grotkopp E, Rejmanek M. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot. 2007;94(4):526-32. https://doi.org/10.3732/ajb.94.4.526. 
  21. Hakim L, Kumar L, Gaikwad KK. Screen printing of catechu (Senegalia catechu)/guar gum based edible ink for food printing and packaging applications. Prog Org Coat. 2023;182:107629. https://doi.org/10.1016/j.porgcoat.2023.107629. 
  22. Hess MC, Mesleard F, Buisson E. Priority effects: emerging principles for invasive plant species management. Ecol Eng. 2019;127:48-57. https://doi.org/10.1016/j.ecoleng.2018.11.011. 
  23. Kato-Noguchi H, Kurniadie D. Allelopathy and allelochemicals of Leucaenaleucocephala as an invasive plant species. Plants (Basel). 2022;11(13):1672. https://doi.org/10.3390/plants11131672. 
  24. Kharel N, Dangol A, Shrestha A, Airi H, Devkota A, Thapa LB, et al. Germination patterns and seedling growth of congeneric native and invasive Mimosa species: implications for risk assessment. Ecol Evol. 2024;14(4):e11312. https://doi.org/10.1002/ece3.11312. 
  25. Khera N, Singh RP. Germination of some multipurpose tree species in five provenances in response to variation in light, temperature, substrate and water stress. Trop Ecol. 2005;46(2):203-17. 
  26. Kumari S, S D L, B S, Khanal S. Efficacy of integrated Ayurveda treatment protocol in type 2 diabetes mellitus - a case report. J Ayurveda Integr Med. 2022;13(1):100512. https://doi.org/10.1016/j.jaim.2021.08.005. 
  27. Larson JE, Anacker BL, Wanous S, Funk JL. Ecological strategies begin at germination: traits, plasticity and survival in the first 4 days of plant life. Funct Ecol. 2020;34(5):968-79. https://doi.org/10.1111/1365-2435.13543. 
  28. Lowe S, Browne M, Boudjelas S, De Poorter M. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Auckland: Invasive Species Specialist Group (ISSG); 2000. 
  29. Macleod N, Ortiz N, Fefferman N, Clyde W, Schulter C, Maclean J. Phenotypic response of foraminifera to episodes of global environmental change. In: Culver SJ, Rawson PF, editors. Biotic response to global change: the last 145 million years. New York: Cambridge University Press; 2000. p. 51-78. 
  30. Mandak B. Germination requirements of invasive and non-invasive Atriplex species: a comparative study. Flora. 2003;198(1):45-54. https://doi.org/10.1078/0367-2530-00075. 
  31. Mangla S, Callaway RM. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J Ecol. 2008;96(1):58-67. https://doi.org/10.1111/j.1365-2745.2007.01312.x. 
  32. Matzek V. Trait values, not trait plasticity, best explain invasive species' performance in a changing environment. PLoS One. 2012;7(10):e48821. https://doi.org/10.1371/journal.pone.0048821. 
  33. Mello TJ, Oliveira AA. Making a bad situation worse: an invasive species altering the balance of interactions between local species. PLoS One. 2016;11(3):e0152070. https://doi.org/10.1371/journal.pone.0152070. 
  34. Michel BE, Kaufmann MR. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973;51(5):914-6. https://doi.org/10.1104/pp.51.5.914. 
  35. Moles AT, Westoby M. Seedling survival and seed size: a synthesis of the literature. J Ecol. 2004;92(3):372-83. https://doi.org/10.1111/j.0022-0477.2004.00884.x. 
  36. Morris TL, Esler KJ, Barger NN, Jacobs SM, Cramer MD. Ecophysiological traits associated with the competitive ability of invasive Australian acacias. Divers Distrib. 2011;17(5):898-910. https://doi.org/10.1111/j.1472-4642.2011.00802.x. 
  37. Muscolo A, Sidari M, Anastasi U, Santonoceto C, Maggio A. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact. 2014;9(1):354-63. https://doi.org/10.1080/17429145.2013.835880. 
  38. Obiazi CC. Hot water enhanced germination of Leucaena leucocephala seeds in light and dark conditions. Curr Res Agric Sci. 2015;2(2):67-72. https://doi.org/10.18488/journal.68/2015.2.2/68.2.67.72. 
  39. Orwa C, Mutua A, Kindt R, Simons A, Jamnadass RH. Agroforestree database: a tree reference and selection guide. Version 4.0. Nairobi: World Agroforestry Centre; 2009. 
  40. Paudel PK, Bhattarai BP, Kindlmann P. An overview of the biodiversity in Nepal. In: Kindlmann P, editor. Himalayan biodiversity in the changing world. Dordrecht: Springer; 2011. p. 1-40. 
  41. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167-234. 
  42. Plummer J. Senegalia catechu. The IUCN red list of threatened species 2021: e.T169300001A169300339. 2021. https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T169300001A169300339.en. Accessed 20 Sep 2024. 
  43. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 2012;193(1):30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x. 
  44. Pringle EG, Alvarez-Loayza P, Terborgh J. Seed characteristics and susceptibility to pathogen attack in tree seeds of the Peruvian Amazon. Plant Ecol. 2007;193:211-22. https://doi.org/10.1007/s11258-006-9259-4. 
  45. Pysek P, Richardson DM. Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W, editor. Biological invasions. Berlin: Springer; 2007. p. 97-125. 
  46. Rejmanek M, Richardson DM. What attributes make some plant species more invasive? Ecology. 1996;77(6):1655-61. https://doi.org/10.2307/2265768. 
  47. Richardson DM, Pysek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr Earth Environ. 2006;30(3):409-31. https://doi.org/10.1191/0309133306pp490pr. 
  48. Saeed S, Shaukat SS. Effect of seed size on germination, emergence, growth and seedling survival of Senna occidentalis link. Pak J Biol Sci. 2000;3:292-5. https://doi.org/10.3923/pjbs.2000.292.295. 
  49. Shrestha BB, Poudel AS, Pandey M. Plant invasions in Nepal: what we do not know? In: Rokaya MB, Sigdel SR, editors. Flora and vegetation of Nepal. Cham: Springer; 2024. p. 333-60. 
  50. Shrestha BB, Witt ABR, Shen S, Khuroo AA, Shrestha UB, Naqinezhad A. Plant invasions in Asia. In: Clements DR, Upadhyaya MK, Joshi S, Shrestha A, editors. Global plant invasions. Cham: Springer; 2022. p. 89-127. 
  51. Singh B, Rawat JMS, Pandey V. Influence of sowing depth and orientation on germination and seedling emergence of Cinnamomum tamala Nees. J Environ Biol. 2017;38:271-6. https://doi.org/10.22438/jeb/38/2/MS-144. 
  52. Sutherland S. What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia. 2004;141(1):24-39. https://doi.org/10.1007/s00442-004-1628-x. 
  53. Todaria NP, Bagwari HK, Chauhan DS. Effect of seed source, temperature and light on seed germination of Acacia catechu. Indian J Trop Biodivers. 2004;12(1-2):43-7. 
  54. van Kleunen M, Johnson SD, Fischer M. Predicting naturalization of southern African Iridaceae in other regions. J Appl Ecol. 2007;44(3):594-603. https://doi.org/10.1111/j.1365-2664.2007.01304.x. 
  55. Wainwright CE, Wolkovich EM, Cleland EE. Seasonal priority effects: implications for invasion and restoration in a semi-arid system. J Appl Ecol. 2012;49(1):234-41. https://doi.org/10.1111/j.1365-2664.2011.02088.x. 
  56. Wang C, Cheng H, Wei M, Wang S, Wu B, Du D. Plant height and leaf size: Which one is more important in affecting the successful invasion of Solidago canadensis and Conyza canadensis in urban ecosystems? Urban For Urban Green. 2021;59:127033. https://doi.org/10.1016/j.ufug.2021.127033. 
  57. Witt A, Beale T, Van Wilgen BW. An assessment of the distribution and potential ecological impacts of invasive alien plant species in eastern Africa. Trans R Soc S Afr. 2018;73(3):217-36. 
  58. Wolfe BT, Van Bloem SJ. Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: understanding why Leucaena leucocephala dominates and native species fail. For Ecol Manag. 2012;267:253-61. https://doi.org/10.1016/j.foreco.2011.12.015. 
  59. Zhang C, Shi S, Wang B, Zhao J. Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiol Plant. 2018;40:25. https://doi.org/10.1007/s11738-017-2597-0.