DOI QR코드

DOI QR Code

Origins and ingredients of honey from a Salix community in a Janghang Wetland in Han River estuary, Korea

  • Youngil Ryu (Department of Biological Science, Ajou University) ;
  • Donguk Han (ECO Korea, PGAI) ;
  • In Kwon Lee (R&D Division, Agricultural Technology Center) ;
  • Sangkyu Park (Department of Biological Science, Ajou University)
  • 투고 : 2024.02.26
  • 심사 : 2024.06.03
  • 발행 : 2024.09.30

초록

Background: Janghang Wetland is a well-preserved area located in a natural estuary and brackish water zone. There exist a large community of Salix triandra subsp. nipponica-S. koreensis, with S. triandra subsp. nipponica being the dominant species in the tidal forest. The metabolite composition of honey is diverse and influenced by the floral source and environmental factors. The aim of this study is to identify the plant origins of collected honey and examine changes in metabolite composition over time within the willow community in Janghang Wetland. Results: The study found that S. triandra subsp. nipponica was the most prominent component in the honey (50.7%), followed by Prunus padus (21.8%). In terms of pollen, P. padus was the most frequently detected (44.9%), followed by S. triandra subsp. nipponica (32.7%). The honey collected from Janghang Wetland was differentiated based on the collection time (March vs. April). Honeys collected in March exhibited a higher sucrose content than those gathered in April, while honeys collected in April demonstrated a higher mannose content compared to those obtained in March. The honey collected in Janghang Wetland had higher levels of sucrose and mannose content compared to commercial honey. In contrast, honey from an apiculture company had higher levels of lactitol and melibose. When comparing honey samples, it was found that Janghang Wetland honey showed lower levels of total phenolic content and total flavonoid content compared to commercial honeys. Conclusions: The metabolites in honey were found to be affected by both the collection time and geographical origin, and the results of metabarcoding in honey was influenced by the floral origin. These findings can assist in identifying the origin of honey and contribute to a better understanding of metabolite diversity in honey.

키워드

과제정보

We are grateful to the reviewers for their thoughtful comments and valuable contributions to improving our manuscript.

참고문헌

  1. Adamchuk L, Sukhenko V, Akulonok O, Bilotserkivets T, Vyshniak V, Lisohurska D, et al. Methods for determining the botanical origin of honey. Potravin Slovak J Food Sci. 2020;14:483-93. https://doi.org/10.5219/1386.
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10. https://doi.org/10.1016/S0022-2836(05)80360-2.
  3. Anklam E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998;63(4):549-62. https://doi.org/10.1016/S0308-8146(98)00057-0.
  4. Baldwin BG. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol. 1992;1(1):3-16. https://doi.org/10.1016/1055-7903(92)90030-k.
  5. Balkanska R, Stefanova K, Stoikova-Grigorova R. Main honey botanical components and techniques for identification: a review. J Apic Res. 2020;59(5):852-61. https://doi.org/10.1080/00218839.2020.1765481.
  6. Beekman M, Ratnieks FL. Long-range foraging by the honey-bee, Apis mellifera L.. Funct Ecol. 2000;14(4):490-6. https://doi.org/10.1046/j.1365-2435.2000.00443.x.
  7. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41(Database issue):D36-42. https://doi.org/10.1093/nar/gks1195.
  8. Canto A, Herrera CM, Garcia IM, Perez R, Vaz M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol Distrib Funct Ecol Plants. 2011;206(7):668-75. https://doi.org/10.1016/j.flora.2011.02.003.
  9. Chalcoff VR, Gleiser G, Ezcurra C, Aizen MA. Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms. Evol Ecol. 2017;31:585-602. https://doi.org/10.1007/s10682-017-9887-2.
  10. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613. https://doi.org/10.1371/journal.pone.0008613.
  11. Choe KI, Kwon JH, Park KH, Oh MH, Kim MH, Kim HH, et al. The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules. 2012;17(10):11484-94. https://doi.org/10.3390/molecules171011484.
  12. Coffey MF, Breen J. Seasonal variation in pollen and nectar sources of honey bees in Ireland. J Apic Res. 1997;36(2):63-76. https://doi.org/10.1080/00218839.1997.11100932.
  13. de Sousa LL, Silva SM, Xavier R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ DNA. 2019;1(3):199-214. https://doi.org/10.1002/edn3.27.
  14. de Vere N, Jones LE, Gilmore T, Moscrop J, Lowe A, Smith D, et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci Rep. 2017;7:42838. https://doi.org/10.1038/srep42838.
  15. Dong R, Zheng Y, Xu B. Phenolic profiles and antioxidant capacities of Chinese unifloral honeys from different botanical and geographical sources. Food Bioprocess Technol. 2013;6:762-70. https://doi.org/10.1007/s11947-011-0726-0.
  16. Gasic UM, Milojkovic-Opsenica DM, Tesic ZL. Polyphenols as possible markers of botanical origin of honey. J AOAC Int. 2017;100(4):852-61. https://doi.org/10.5740/jaoacint.17-0144.
  17. Ghosh S, Jeon H, Jung C. Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. J Ecol Environ. 2020;44:4. https://doi.org/10.1186/s41610-020-0149-9.
  18. Han D, No H, Kim E, Lee E, Tark J. 2022 Han River estuarine wetland conservation area ecosystem monitoring report. Sejong: Ministry of Environment; 2022.
  19. Hawkins J, De Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, et al. Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One. 2015;10(8):e0134735. https://doi.org/10.1371/journal.pone.0134735.
  20. Iurlina MO, Saiz AI, Fritz R, Manrique GD. Major flavonoids of Argentinean honeys. Optimisation of the extraction method and analysis of their content in relationship to the geographical source of honeys. Food Chem. 2009;115(3):1141-9. https://doi.org/10.1016/j.foodchem.2009.01.003.
  21. Julkunen-Tiitto R. Phenolic constituents of Salix: a chemotaxonomic survey of further finnish species. Phytochemistry. 1989;28(8):2115-25. https://doi.org/10.1016/S0031-9422(00)97930-5.
  22. Keck F, Couton M, Altermatt F. Navigating the seven challenges of taxonomic reference databases in metabarcoding analyses. Mol Ecol Resour. 2023;23(4):742-55. https://doi.org/10.1111/1755-0998.13746.
  23. Khan KA, Ghramh HA, Ahmad Z, El-Niweiri MAA, Mohammed MEA. Honey bee (Apis mellifera) preference towards micronutrients and their impact on bee colonies. Saudi J Biol Sci. 2021;28(6):3362-6. https://doi.org/10.1016/j.sjbs.2021.02.084.
  24. Khansari E, Zarre S, Alizadeh K, Attar F, Aghabeigi F, Salmaki Y. Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. Flora Morphol Distrib Funct Ecol Plants. 2012;207(3):203-11. https://doi.org/10.1016/j.flora.2012.01.006.
  25. Kim J, Joo S, Park S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia. 2021;85(6):487-93. https://doi.org/10.1515/mammalia-2021-0010.
  26. Kosakowska O, Baczek K, Przybyl JL, Pioro-Jabrucka E, Czupa W, Synowiec A, et al. Antioxidant and antibacterial activity of roseroot (Rhodiola rosea L.) dry extracts. Molecules. 2018;23(7):1767. https://doi.org/10.3390/molecules23071767.
  27. Koulis GA, Tsagkaris AS, Aalizadeh R, Dasenaki ME, Panagopoulou EI, Drivelos S, et al. Honey phenolic compound profiling and authenticity assessment using HRMS targeted and untargeted metabolomics. Molecules. 2021;26(9):2769. https://doi.org/10.3390/molecules26092769.
  28. Kucuk M, Kolayli S, Karaoglu S, Ulusoy E, Baltaci C, Candan F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007;100(2):526-34. https://doi.org/10.1016/j.foodchem.2005.10.010.
  29. Lee DK, Yoon MH, Kang YP, Yu J, Park JH, Lee J, et al. Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem. 2013;141(4):3931-7. https://doi.org/10.1016/j.foodchem.2013.06.064.
  30. Li Y, Jin Y, Yang S, Zhang W, Zhang J, Zhao W, et al. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry. J Chromatogr A. 2017;1499:78-89. https://doi.org/10.1016/j.chroma.2017.03.071.
  31. Lichtenberg-Kraag B. Evidence for correlation between invertase activity and sucrose content during the ripening process of honey. J Apic Res. 2014;53(3):364-73. https://doi.org/10.3896/IBRA.1.53.3.03.
  32. Lichtenberg-Kraag B. Saccharose degradation over time in stored honey: Influence of time, temperature, enzyme activity and botanical origin. J Food Nutr Res. 2012;51(4):217-24.
  33. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1(1):387-96. https://doi.org/10.1038/nprot.2006.59.
  34. Ma DM, Gandra SVS, Manoharlal R, La Hovary C, Xie DY. Untargeted metabolomics of Nicotiana tabacum grown in United States and India characterizes the association of plant metabolomes with natural climate and geography. Front Plant Sci. 2019;10:1370. https://doi.org/10.3389/fpls.2019.01370.
  35. Milla L, Sniderman K, Lines R, Mousavi-Derazmahalleh M, Encinas-Viso F. Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecol Evol. 2021;11(13):8683-98. https://doi.org/10.1002/ece3.7679.
  36. Mohamadzade Namin S, Kim MJ, Son M, Jung C. Honey DNA metabarcoding revealed foraging resource partitioning between Korean native and introduced honey bees (Hymenoptera: Apidae). Sci Rep. 2022a;12(1):14394. https://doi.org/10.1038/s41598-022-18465-5.
  37. Mohamadzade Namin S, Son M, Jung C. Current methodologies in construction of plant-pollinator network with emphasize on the application of DNA metabarcoding approach. J Ecol Environ. 2022b;46:12. https://doi.org/10.5141/jee.22.003.
  38. Nelson JM, Cohn DJ. Invertase in honey. J Biol Chem. 1924;61(1):193-224.
  39. Ozkok A, Akel Bilgic H, Kosukcu C, Arik G, Canli D, Yet I, et al. Comparing the melissopalynological and next generation sequencing (NGS) methods for the determining of botanical origin of honey. Food Control. 2023;148:109630. https://doi.org/10.1016/j.foodcont.2023.109630.
  40. Percival M. Pollen collection by Apis mellifera. New Phytol. 1947;46(1):142-65. https://doi.org/10.1111/j.1469-8137.1947.tb05076.x.
  41. Peters K, Gorzolka K, Bruelheide H, Neumann S. Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol. 2018;8(17):9105-17. https://doi.org/10.1002/ece3.4361.
  42. Ramsar Sites Information Service. 2021. https://rsis.ramsar.org/ris/2448. Accessed 25 Dec 2023.
  43. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci. 2015;3(1):apps.1400066. https://doi.org/10.3732/apps.1400066.
  44. Sahin H, Kolayli S, Beykaya M. Investigation of variations of invertase and glucose oxidase degrees against heating and timing options in raw honeys. J Chem. 2020;2020:5398062. https://doi.org/10.1155/2020/5398062.
  45. Suleiman MH, ALaerjani WMA, Mohammed MEA. Influence of altitudinal variation on the total phenolic and flavonoid content of Acacia and Ziziphus honey. Int J Food Prop. 2020;23(1):2077-86. https://doi.org/10.1080/10942912.2020.1842445.
  46. Sun S, Tuo Q, Li D, Wang X, Li X, Zhang Y, et al. Antioxidant effects of salidroside in the cardiovascular system. Evid Based Complement Alter Med. 2020;2020:9568647. https://doi.org/10.1155/2020/9568647.
  47. Thieme H. [The phenolic glycosides of Salicaceae 1]. Planta Med. 1965;13(4):431-8. German. https://doi.org/10.1055/s-0028-1100137.
  48. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523-6. https://doi.org/10.1038/nmeth.3393.
  49. Wang X, Li Y, Chen L, Zhou J. Analytical strategies for LC-MS-based untargeted and targeted metabolomics approaches reveal the entomological origins of honey. J Agric Food Chem. 2022;70(4):1358-66. https://doi.org/10.1021/acs.jafc.1c07153.
  50. Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GCMS. J Agric Food Chem. 2019;67(43):12144-52. https://doi.org/10.1021/acs.jafc.9b04438.
  51. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  52. Wood TJ, Vanderplanck M, Vastrade M, Vaudo AD, Michez D. Trees for bees: could woody plant pollen be used as a consistent resource in bee-focused agri-environment schemes? Entomol Gen. 2022;42(3):361-74.
  53. Wood TJ, Kaplan I, Szendrei Z. Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front Ecol Evol. 2018;6:210. https://doi.org/10.3389/fevo.2018.00210.
  54. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293-300. https://doi.org/10.1039/c1an15605e.