DOI QR코드

DOI QR Code

Antipredator response of Korean clawed salamander (Onychodactylus koreanus) larvae to odors of potential predators (Chinese minnow, Rhynchocypris oxycephalus and Korean freshwater crayfish, Cambaroides similis)

  • Jiyeon Cheon (Division of Science Education, Graduate School, Kangwon National University) ;
  • Jongsun Kim (Division of Science Education, Graduate School, Kangwon National University) ;
  • Hyerim Kwon (Division of Science Education, Graduate School, Kangwon National University) ;
  • Jiho Park (Division of Science Education, Graduate School, Kangwon National University) ;
  • Daesik Park (Division of Science Education, Graduate School, Kangwon National University)
  • Received : 2024.01.31
  • Accepted : 2024.06.08
  • Published : 2024.09.30

Abstract

Background: To identify and avoid predators, amphibians rely on chemical cues. Onychodactylus koreanus undergo two to three years of the larval stage in mountainous streams, where they encounter various predators. We aimed to identify the potential predators of O. koreanus larvae based on their antipredator responses to predator odors. Additionally, we examined whether the response was innate or can be strengthened by predator olfactory learning. Results: In Experiment 1, O. koreanus larvae exhibited a substantial antipredator response to Chinese minnow (Rhynchocypris oxycephalus) odor but not to Korean freshwater crayfish (Cambaroides similis) odor. In Experiment 2, O. koreanus larvae, who did not previously expose to R. oxycephalus odor, demonstrated a substantial antipredator response to it. Experiment 3 indicated that predator olfactory learning of R. oxycephalus did not enhance the antipredator response of the larvae. Conclusions: Rhynchocypris oxycephalus could prey on O. koreanus larvae, whose antipredator response to R. oxycephalus odor is innate and not enhanced by olfactory learning. Further investigation into the olfactory system of this species may provide insights into the life cycle of O. koreanus, uncovering hidden underground breeding sites and unknown breeding periods.

Keywords

Acknowledgement

We thank Woo-Jin Choi, Hoan-Jin Jang, Jaejin Park, Il-Kook Park and Yucheol Shin for their help during our research.

References

  1. Anthony C, Hickerson C, Venesky M. Responses of juvenile terrestrial salamanders to introduced (Lithobius forficatus) and native centipedes (Scolopocryptops sexspinosus). J Zool. 2007;271(1):54-62. https://doi.org/10.1111/j.1469-7998.2006.00202.x.
  2. Brown GE, Chivers DP, Elvidge CK, Jackson CD, Ferrari MC. Background level of risk determines the intensity of predator neophobia in juvenile convict cichlids. Behav Ecol Sociobiol. 2014;68:127-133. https://doi.org/10.1007/s00265-013-1629-z.
  3. Chivers DP, Smith RJF. Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Anim Behav. 1994;48(3):597-605. https://doi.org/10.1006/anbe.1994.1279.
  4. Collins JP, Storfer A. Global amphibian declines: sorting the hypotheses. Divers Distrib. 2003;9(2):89-98. https://doi.org/10.1046/j.1472-4642.2003.00012.x.
  5. Crane AL, Bairos-Novak KR, Goldman JA, Brown GE. Chemical disturbance cues in aquatic systems: a review and prospectus. Ecol Monogr. 2022;92(1):e01487. https://doi.org/10.1002/ecm.1487.
  6. Crane AL, Demuth BS, Ferrari MC. Experience with predators shapes learning rules in larval amphibians. Behav Ecol. 2017;28(1):312-8. https://doi.org/10.1093/beheco/arw161.
  7. Crane AL, Mathis A. Predator-recognition training: a conservation strategy to increase postrelease survival of hellbenders in head-starting programs. Zoo Biol. 2011;30(6):611-22. https://doi.org/10.1002/zoo.20358.
  8. Crowder C, Ward J. Embryonic antipredator defenses and behavioral carryover effects in the fathead minnow (Pimephales promelas). Behav Ecol Sociobiol. 2022;76(2):27. https://doi.org/10.1007/s00265-022-03136-2.
  9. Davis DR, DeSantis DL, Gabor CR. Antipredator behavior of the Barton Springs salamander (Eurycea sosorum) in response to aquatic invertebrates: potential consequences of habitat restoration. Hydrobiologia. 2017;795:129-37. https://doi.org/10.1007/s10750-017-3124-4.
  10. Dawkins R, Krebs JR. Arms races between and within species. Proc R Soc Lond B Biol Sci. 1979;205(1161):489-511. https://doi.org/10.1098/rspb.1979.0081.
  11. Dempsey BL, Roden JW, Bidwell JR. Predator-avoidance of larval black-bellied salamanders (Desmognathus quadramaculatus) in response to cues from native and nonnative salmonids. Ethol Ecol Evol. 2021;34(6):602-16. https://doi.org/10.1080/03949370.2021.1988720.
  12. DeSantis DL, Davis DR, Gabor CR. Chemically mediated predator avoidance in the Barton Springs salamander (Eurycea sosorum). Herpetologica. 2013;69(3):291-7. https://doi.org/10.1655/HERPETOLOGICA-D-13-00017.
  13. Dill LM. Animal decision making and its ecological consequences: the future of aquatic ecology and behaviour. Can J Zool. 1987;65(4):803-11. https://doi.org/10.1139/z87-128.
  14. Epp KJ, Gabor CR. Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethology. 2008;114(6):607-15. https://doi.org/10.1111/j.1439-0310.2008.01494.x.
  15. Ferrari MC, Chivers DP. Learning about non-predators and safe places: the forgotten elements of risk assessment. Anim Cogn. 2011;14:309-16. https://doi.org/10.1007/s10071-010-0363-4.
  16. Ferrari MC, Vrtelova J, Brown GE, Chivers DP. Understanding the role of uncertainty on learning and retention of predator information. Anim Cogn. 2012;15:807-13. https://doi.org/10.1007/s10071-012-0505-y.
  17. Ferreira RB, Lourenco-De-Moraes R, Zocca C, Duca C, Beard KH, Brodie ED. Antipredator mechanisms of post-metamorphic anurans: a global database and classification system. Behav Ecol Sociobiol. 2019;73:69. https://doi.org/10.1007/s00265-019-2680-1.
  18. Galex IA, Gallant CM, D'Avignon N, Kuchenbrod LM, Fletcher CA, Rogala AR. Evaluation of effective and practical euthanasia methods for larval African clawed frogs (Xenopus laevis). J Am Assoc Lab Anim Sci. 2020;59(3):269-74. https://doi.org/10.30802/AALASJAALAS-19-000141.
  19. Garcia TS, Sih A. Color change and color-dependent behavior in response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Oecologia. 2003;137:131-9. https://doi.org/10.1007/s00442-003-1314-4.
  20. Gonzalo A, Cabido C, Lopez P, Martin J. Conspecific alarm cues, but not predator cues alone, determine antipredator behavior of larval southern marbled newts, Triturus pygmaeus. Acta Ethol. 2012;15:211-6. https://doi.org/10.1007/s10211-012-0123-3.
  21. Hahn LG, Oswald P, Caspers BA. Behavioural responses to chemical cues of predators differ between fire salamander larvae from two different habitats. J Zool. 2023;319(3):200-9. https://doi.org/10.1111/jzo.13039.
  22. Hemnani M, Guimaraes ISC, Kaefer IL, Pires THdS. Alarm reaction depends on multiple chemical cues in tadpoles of the cane toad (Rhinella marina). Ethol Ecol Evol. 2023;35(3):363-75. https://doi.org/10.1080/03949370.2022.2082537.
  23. Hettyey A, Thonhauser KE, Bokony V, Penn DJ, Hoi H, Griggio M. Naive tadpoles do not recognize recent invasive predatory fishes as dangerous. Ecology. 2016;97(11):2975-85. https://doi.org/10.1002/ecy.1532.
  24. Hettyey A, Toth Z, Thonhauser KE, Frommen JG, Penn DJ, Van Buskirk J. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia. 2015;179:699-710. https://doi.org/10.1007/s00442-015-3382-7.
  25. Jeon JY, Lee DK, Kim JH. Functional group analyses of herpetofauna in South Korea using a large dataset. Sci Data. 2023;10:1-15. https://doi.org/10.1038/s41597-022-01924-z.
  26. Kang C, Sherratt TN, Kim YE, Shin Y, Moon J, Song U, et al. Differential predation drives the geographical divergence in multiple traits in aposematic frogs. Behav Ecol. 2017;28(4):1122-30. https://doi.org/10.1093/beheco/arx076.
  27. Kats LB, Dill LM. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience. 1998;5(3):361-94. https://doi.org/10.1080/11956860.1998.11682468.
  28. Kats LB, Sih A. Oviposition site selection and avoidance of fish by streamside salamanders (Ambystoma barbouri). Copeia. 1992;(2):468-73. https://doi.org/10.2307/1446206.
  29. Kawai T, Faulkes Z, Scholtz G. Freshwater crayfish: a global overview. Boca Raton: CRC Press; 2015.
  30. Kelleher SR, Silla AJ, Byrne PG. Animal personality and behavioral syndromes in amphibians: a review of the evidence, experimental approaches, and implications for conservation. Behav Ecol Sociobiol. 2018;72(5):1-26.
  31. Kelly M, Wehi PM, Johnson SL. Behavioural differences in predator aware and predator naive Wellington tree weta, Hemideina crassidens. Curr Res Insect Sci. 2023;3:100058. https://doi.org/10.1016/j.cris.2023.100058.
  32. Kenison EK, Williams RN. Training for translocation: predator conditioning induces behavioral plasticity and physiological changes in captive eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) (Cryptobranchidae, Amphibia). Diversity. 2018;10(1):13. https://doi.org/10.3390/d10010013.
  33. Laurila A. Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos. 2000;88(1):159-68. https://doi.org/10.1034/j.1600-0706.2000.880118.x.
  34. Laurila A, Kujasalo J, Ranta E. Different antipredator behaviour in two anuran tadpoles: effects of predator diet. Behav Ecol Sociobiol. 1997;40:329-36. https://doi.org/10.1007/s002650050349.
  35. Lee JH, Ra NY, Eom J, Park D. Population dynamics of the long-tailed clawed salamander larva, Onychodactylus fischeri, and its age structure in Korea. J Ecol Field Biol. 2008;31(1):31-6. https://doi.org/10.5141/JEFB.2008.31.1.031.
  36. Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68(4):619-40. https://doi.org/10.1139/z90-092.
  37. Lucon-Xiccato T, Ferrari MC, Chivers DP, Bisazza A. Odour recognition learning of multiple predators by amphibian larvae. Anim Behav. 2018;140:199-205. https://doi.org/10.1016/j.anbehav.2018.04.022.
  38. Manenti R, Melotto A, Denoel M, Ficetola GF. Amphibians breeding in refuge habitats have larvae with stronger antipredator responses. Anim Behav. 2016;118:115-21. https://doi.org/10.1016/j.anbehav.2016.06.006.
  39. Mathis A, Ferrari MC, Windel N, Messier F, Chivers DP. Learning by embryos and the ghost of predation future. Proc Biol Sci. 2008;275(1651):2603-7. https://doi.org/10.1098/rspb.2008.0754.
  40. Mathis A, Vincent F. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Can J Zool. 2000;78(9):1646-52. https://doi.org/10.1139/z00-090.
  41. Mirza RS, Chivers DP. Predator-recognition training enhances survival of brook trout: evidence from laboratory and field-enclosure studies. Can J Zool. 2000;78(12):2198-208. https://doi.org/10.1139/z00-164.
  42. Momot WT. Redefining the role of crayfish in aquatic ecosystems. Rev Fish Sci. 1995;3(1):33-63. https://doi.org/10.1080/10641269509388566.
  43. Park D. The first observation of breeding of the long-tailed clawed salamander, Onychodactylus fischeri, in the Field. Curr Herpetol. 2005;24(1):7-12. https://doi.org/10.3105/1345-5834(2005)24[7:TFOOBO]2.0.CO;2.
  44. Park D, Sung HC. Male Hynobius leechii (Amphibia: Hynobiidae) discriminate female reproductive states based on chemical cues. Integr Biosci. 2006;10(3):137-43. https://doi.org/10.1080/17386357.2006.9647295.
  45. Petranka JW. Fish predation: a factor affecting the spatial distribution of a stream-breeding salamander. Copeia. 1983;1983(3):624-8. https://doi.org/10.2307/1444326.
  46. Poyarkov Jr NA, Che J, Min MS, Kuro-O M, Yan F, Li C, et al. Review of the systematics, morphology and distribution of Asian clawed salamanders, genus Onychodactylus (Amphibia, Caudata: Hynobiidae), with the description of four new species. Zootaxa. 2012;3465(1):1-106. https://doi.org/10.11646/zootaxa.3465.1.1.
  47. Quaranta A, Bellantuono V, Cassano G, Lippe C. Why amphibians are more sensitive than mammals to xenobiotics. PLoS One. 2009;4(11):e7699. https://doi.org/10.1371/journal.pone.0007699.
  48. Regel E, Epshtein S. Some peculiarities of biology of Onychodactylus fischeri. Zool Zhurnal. 1975;54:1515-24.
  49. Sato T. Temperature and velocity of water at breeding sites of Hynobius retardatus. Jpn J Herpetol. 1990;13(4):131-5. https://doi.org/10.5358/hsj1972.13.4_131.
  50. Shin Y, Min MS, Borzee A. Driven to the edge: Species distribution modeling of a clawed salamander (Hynobiidae: Onychodactylus koreanus) predicts range shifts and drastic decrease of suitable habitats in response to climate change. Ecol Evol. 2021;11(21):14669-88. https://doi.org/10.1002/ece3.8155.
  51. Solkin V. On the ecology of the salamander Onychodactylus fischeri (Boulenger, 1886)(Caudata: Hynobiidae). Herpetozoa. 1993;6(1):29-36.
  52. Souza-Bastos LRD, Freire CA, Fernandes-De-Castilho M. Skin extract from Rhamdia quelen (Siluriformes: Heptapteridae) does not promote stress in conspecifics. Neotrop Ichthyol. 2014;12:125-32. https://doi.org/10.1590/S1679-62252014000100013.
  53. Wisenden BD. Chemically mediated strategies to counter predation. In: Collin SP, Marshall NJ, editors. Sensory processing in aquatic environments. New York: Springer; 2003. p. 236-51.
  54. Won H. Amphibians and reptiles of Chosun. Pyeongyang: Science Academic Press; 1971.
  55. Zabierek K, Epp K. Antipredator response of Eurycea nana to a nocturnal and a diurnal predator: avoidance is not affected by circadian cycles of predators. Amphib-Reptil. 2016;37:397-403. https://doi.org/10.1163/15685381-00003070.
  56. Zhang F, Zhao J, Zhang Y, Messenger K, Wang Y. Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetol Res. 2015;6:51-8. https://doi.org/10.16373/j.cnki.ahr.140023.