DOI QR코드

DOI QR Code

Multilingual Knowledge Graphs: Challenges and Opportunities

  • Partha Sarathi Mandal (Department of Library and Information Science The University of Burdwan) ;
  • Sukumar Mandal (Department of Library and Information Science The University of Burdwan)
  • Received : 2024.06.22
  • Accepted : 2024.08.19
  • Published : 2024.12.31

Abstract

Multilingual Knowledge Graphs (MKGs) have emerged as a crucial component in various natural language processing tasks, enabling efficient representation and utilization of structured knowledge across multiple languages. One can get data, information, and knowledge from various sectors, like libraries, archives, institutional repositories, etc. Variable quality of metadata, multilingualism, and semantic diversity make it a challenge to create a digital library and multilingual search facility. To accept these challenges, there is a need to design a framework to integrate various structured and unstructured data sources for integration, unification, and sharing databases. These are controlled using linked data and semantic web approaches. In future, multilingual knowledge graph overcomes all the linguistic nuances, technical barriers like semantic interoperability, data harmonization etc and enhance cooperation and collaboration throughout the world. Through a comprehensive analysis of the current state-of-the-art techniques and ongoing research efforts, this paper aims to offer insights into the future directions and potential advancements in the field of Multilingual Knowledge Graphs. This paper deals with a multilingual knowledge graph and how to build up a multilingual knowledge graph. It also focuses on the various challenges and opportunities for designing multilingual knowledge graphs.

Keywords

References

  1. Bordes, A., & Gabrilovich, E. (2014). Constructing and mining web-scale knowledge graphs: KDD 2014 tutorial. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1967-1967. New York New York USA: ACM. https://doi.org/10.1145/2623330.2630803 
  2. Cheng, D., Yang, F., Xiang, S., & Liu, J. (2022). Financial time series forecasting with multi-modality graph neural network. Pattern Recognition, 121, 108218. https://doi.org/10.1016/j.patcog.2021.108218 
  3. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., & Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 601-610. New York New York USA: ACM. https://doi.org/10.1145/2623330.2623623 
  4. Evenstein Sigalov, S., & Nachmias, R. (2023). Investigating the potential of the semantic web for education: Exploring Wikidata as a learning platform. Education and Information Technologies, 28(10), 12565-12614. https://doi.org/10.1007/s10639-023-11664-1 
  5. Khan, S., Yin, P., Guo, Y., Asim, M., & Abd El-Latif, A. A. (2024). Heterogeneous transfer learning: Recent developments, applications, and challenges. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18352-3 
  6. Ko, H., Witherell, P., Lu, Y., Kim, S., & Rosen, D. W. (2021). Machine learning and knowledge graph based design rule construction for additive manufacturing. Additive Manufacturing, 37, 101620. https://doi.org/10.1016/j.addma.2020.101620 
  7. Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence, 193, 217-250. https://doi.org/10.1016/j.artint.2012.07.001 
  8. Oelen, A., Jaradeh, M. Y., Stocker, M., & Auer, S. (2020). Generate fair literature surveys with scholarly knowledge graphs. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, 97-106. Virtual Event China: ACM. https://doi.org/10.1145/3383583.3398520 
  9. Peng, C., Xia, F., Naseriparsa, M., & Osborne, F. (2023). Knowledge graphs: Opportunities and challenges. Artificial Intelligence Review, 56(11), 13071-13102. https://doi.org/10.1007/s10462-023-10465-9 
  10. Sorato, D., Lundsteen, M., Ventura, C. C., & Zavala-Rojas, D. (2024). Using word embeddings for immigrant and refugee stereotype quantification in a diachronic and multilingual setting. Journal of Computational Social Science. https://doi.org/10.1007/s42001-023-00243-6 
  11. Tufchi, S., Yadav, A., & Ahmed, T. (2023). A comprehensive survey of multimodal fake news detection techniques: Advances, challenges, and opportunities. International Journal of Multimedia Information Retrieval, 12(2), 28. https://doi.org/10.1007/s13735-023-00296-3