References
- Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636-46. https://doi.org/10.1016/S0140-6736(19)31138-9
- Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:5-8. https://doi.org/10.1093/gerona/50A.Special_Issue.5
- Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):177-80.
- Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663-72. https://doi.org/10.1038/sj.ejcn.1601198
- Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019;99(1):427-511. https://doi.org/10.1152/physrev.00061.2017
- Sehl ME, Yates FE. Kinetics of human aging: I. Rates of senescence between ages 30 and 70 years in healthy people. J Gerontol A Biol Sci Med Sci. 2001;56(5):B198-208. https://doi.org/10.1093/gerona/56.5.B198
- Ji S, Jung HW, Baek JY, Jang IY, Lee E. Sarcopenia as the Mobility Phenotype of Aging: Clinical Implications. J Bone Metab. 2024;31(1):1-12.
- Lo JH, U KP, Yiu T, Ong MT, Lee WY. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat. 2020;23:38-52. https://doi.org/10.1016/j.jot.2020.04.002
- Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell. 2011;21(1):35-47. https://doi.org/10.1016/j.devcel.2011.06.015
- Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 2005;328(3):751-5. https://doi.org/10.1016/j.bbrc.2004.12.087
- Aguayo D, Mueller SM, Boutellier U, Auer M, Jung HH, Fluck M, Toigo M. One bout of vibration exercise with vascular occlusion activates satellite cells. Exp Physiol. 2016;101(2):295-307. https://doi.org/10.1113/EP085330
- Lin YH, Chou LY, Chou HC, Chen CH, Kang L, Cheng TL, Wang CZ. The Essential Role of Stathmin in Myoblast C2C12 for Vertical Vibration-Induced Myotube Formation. Biomolecules. 2021;11(11).
- Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I. Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Front Physiol. 2019;10:759.
- Wang CZ, Wang GJ, Ho ML, Wang YH, Yeh ML, Chen CH. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J Appl Physiol (1985). 2010;109(3):840-8. https://doi.org/10.1152/japplphysiol.00115.2010
- Kim K, Monroe JC, Gavin TP, Roseguini BT. Skeletal muscle adaptations to heat therapy. J Appl Physiol (1985). 2020;128(6):1635-42. https://doi.org/10.1152/japplphysiol.00061.2020
- McGorm H, Roberts LA, Coombes JS, Peake JM. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med. 2018;48(6):1311-28. https://doi.org/10.1007/s40279-018-0876-6
- Gunes S, Buyukakilli B, Yaman S, Turkseven CH, Balli E, Cimen B, Bayrak G, Celikcan HD. Effects of extremely low-frequency electromagnetic field exposure on the skeletal muscle functions in rats. Toxicol Ind Health. 2020;36(2):119-31. https://doi.org/10.1177/0748233720912061
- Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fano G, Mariggio MA. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radic Biol Med. 2010;48(4):579-89.
- Baskin RJ, Paolini PJ. Volume change and pressure development in muscle during contraction. Am J Physiol. 1967;213(4):1025-30. https://doi.org/10.1152/ajplegacy.1967.213.4.1025
- Hill AV. The pressure developed in muscle during contraction. J Physiol. 1948;107(4):518-26. https://doi.org/10.1113/jphysiol.1948.sp004296
- Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32. https://doi.org/10.1016/j.semcdb.2017.11.011
- Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006;119(Pt 9):1824-32. https://doi.org/10.1242/jcs.02908
- Oh ES, Seo YK, Yoon HH, Cho H, Yoon MY, Park JK. Effects of sub-sonic vibration on the proliferation and maturation of 3T3-L1 cells. Life Sci. 2011;88(3-4):169-77. https://doi.org/10.1016/j.lfs.2010.11.007
- Reusch HP, Chan G, Ives HE, Nemenoff RA. Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition. Biochem Biophys Res Commun. 1997;237(2):239-44. https://doi.org/10.1006/bbrc.1997.7121
- Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21(10):607-32. https://doi.org/10.1038/s41580-020-0255-7
- Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8(8):1168-75. https://doi.org/10.4161/cc.8.8.8147
- Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49-63. https://doi.org/10.1038/nrm3722
- Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC. The Bax/Bcl2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001;117(2):333-40. https://doi.org/10.1046/j.0022-202x.2001.01409.x
- Boise LH, Gottschalk AR, Quintans J, Thompson CB. Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr Top Microbiol Immunol. 1995;200:107-21.
- Velica P, Bunce CM. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Nerve. 2011;44(3):366-70. https://doi.org/10.1002/mus.22056
- Lee W, Eo SR, Choi JH, Kim YM, Nam MH, Seo YK. The Osteogenic Differentiation of Human Dental Pulp Stem Cells through G0/G1 Arrest and the p-ERK/Runx-2 Pathway by Sonic Vibration. Int J Mol Sci. 2021;22(18).
- Sun T, Yan Z, Cai J, Shao X, Wang D, Ding Y, Feng Y, Yang J, Luo E, Feng X, Jing D. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol Int. 2020;44(1):216-28. https://doi.org/10.1002/cbin.11221
- Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. Febs j. 2010;277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
- Melo-Lima S, Lopes MC, Mollinedo F. ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacol Res. 2015;95-96:2-11. https://doi.org/10.1016/j.phrs.2015.02.007
- Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther. 2006;319(3):991-7. https://doi.org/10.1124/jpet.106.107367
- Ebrahimi SM, Asadi J, Fattahian M, Jafari SM, Ghanadian M. Persianolide-A, an eudesmanolide-type sesquiterpene lactone from Artemisia kopetdaghensis, induces apoptosis by regulating ERK signaling pathways. Res Pharm Sci. 2024;19(3):328-37. https://doi.org/10.4103/RPS.RPS_175_23
- McClure MJ, Clark NM, Schwartz Z, Boyan BD. Platelet-rich plasma and alignment enhance myogenin via ERK mitogen activated protein kinase signaling. Biomed Mater. 2018;13(5):055009.
- Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res. 2015;333(2):228-37.
- Li J, Johnson SE. ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun. 2006;345(4):1425-33. https://doi.org/10.1016/j.bbrc.2006.05.051
- Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci. 2019;20(7).