과제정보
본 연구는 인하대학교의 지원과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2021R1C1C2012437)과 정보통신기획평가원의 지원(RS-2023-00229074)을 받아 수행된 연구임.
참고문헌
- Kothe CA, Makeig S. BCILAB: a platform for brain-computer interface development. Journal of Neural Engineering. 2013;10(5):056014.
- Yger F, Berar M, Lotte F. Riemannian approaches in brain-computer interfaces: a review. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016;25(10):1753-62. https://doi.org/10.1109/TNSRE.2016.2627016
- Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces. 2017;4(3):155-74. https://doi.org/10.1080/2326263X.2017.1297192
- Rodrigues PLC, Jutten C, Congedo M. Riemannian Procrustes analysis: transfer learning for brain-computer interfaces. IEEE Transactions on Biomedical Engineering. 2018;66(8):2390-2401. https://doi.org/10.1109/TBME.2018.2889705
- Huang Z, Van Gool L. A Riemannian network for SPD matrix learning. Proceedings of the AAAI Conference on Artificial Intelligence. 2017;31(1):1-10.
- Bhatia R. Positive definite matrices. Princeton: Princeton University Press; 2009. pp. 1-200.
- Gower JC, Dijksterhuis GB. Procrustes problems. Oxford: Oxford University Press; 2004. pp. 1-10.
- Duan RN, Zhu JY, Lu BL. Differential entropy feature for EEG-based emotion classification. Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering. 2013;81-84.
- Koelstra S, Muehl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I. DEAP: A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing. 2011;3(1):18-31.
- Cho H, Ahn M, Ahn S, Kwon M, Jun SC. EEG datasets for motor imagery brain-computer interface. GigaScience. 2017;6(7):gix034.
- Graf AB, Bousquet O, Ratsch G, Scholkopf B. Prototype classification: insights from machine learning. Neural Computation. 2009;21(1):272-300. https://doi.org/10.1162/neco.2009.01-07-443
- Rodrigues PLC, Congedo M, Jutten C. "When does it work?": An exploratory analysis of transfer learning for BCI. Proceedings of the BCI 2019-8th International Brain-Computer Interface Conference. 2019;1-6.
- Gwon D, Hwang MJ, Kwon JH, Shin Y, Ahn MK. A Comparative Analysis of Motor Imagery, Execution, and Observation for Motor Imagery-based Brain-Computer Interface. Journal of Biomedical Engineering Research, 2022;43(6):375-381. https://doi.org/10.9718/JBER.2022.43.6.375
- Kim BH, Choi JW, Lee H, Jo S. A discriminative SPD feature learning approach on Riemannian manifolds for EEG classification. Pattern Recognition. 2023;143:109751.
- Brooks D, Schwander O, Barbaresco F, Schneider JY, Cord M. Riemannian batch normalization for SPD neural networks. Advances in Neural Information Processing Systems. 2019;32:1-10.
- Flamary R, Courty N, Tuia D, Rakotomamonjy A. Optimal transport for domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016;39(9):1853-65