참고문헌
- Cobb J. Outline for the study of scoliosis. Instructional course lecture. 1948:261-275.
- Stokes IA. Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine. 1994;19(2):236-248. https://doi.org/10.1097/00007632-199401001-00020
- Yu HB. Research on application and performance improvement of artificial intelligence algorithm for automating spine segmentation in whole spine X-ray images. Eulji University Graduate School: Daejeon. 2024:1-101.
- Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annual review of biomedical engineering. 2017;19:221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
- Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Laak J, Ginnken B, Sanchez CI. A survey on deep learning in medical image analysis. Medical image analysis. 2017;42:60-88. https://doi.org/10.1016/j.media.2017.07.005
- Lee HY. A Study on Reducing Learning Time of Deep-Learning Algorithm. Hanbat National University Graduate School: Daejeon. 2018:1-48.
- Lee HY, Lee SH. A Study on Reducing Learning Time of Deep-Learning using Network Separation. Journal of Electrical and Electronics Society. 2021;25(2):273-279.
- Yoon BJ, Yu SY. DQN-based Mapless Navigation and learning time reduction algorithm considering moving obstacles. Journal of the Korea Institute of Information & Communication Engineering. 2021;25(3):377-383.
- Sik SB, Jung EY, Yoon CH, Kang KS. An Enhancement of Learning Speed of the Error - Backpropagation Algorithm. Information Processing Society Journal. 1997;4(7):1759-1769.
- Song YS, Seo MS, Kim CW, Kim YH, Yoo BC, Choi HJ, Seo SH, Kang SW, Song MG, Nam DC, Kim DH. AI-Driven Segmentation and Automated Analysis of the Whole Sagittal Spine from X-ray Images for Spinopelvic Parameter Evaluation. Bioengineering. 2023;10(10):1229.
- Sacharisa S, Kartowisastro IH. Enhanced Spine Segmentation in Scoliosis X-ray Images via U-Net. Ingenierie des Systemes d'Information. 2023;28(4):1073-1079.
- Chen Y, Mo Y, Readie A, Ligozio G, Mandal I, Jabbar F, Coroller T, Papiez BW. VertXNet: An Ensemble Method for Vertebrae Segmentation and Identification of Spinal X-Ray. arXiv preprint arXiv:2302.03476. 2023:1-13.
- Kim YT, Jeong TS, Kim YJ, Kim WS, Kim KG, Yee GT. Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision. Journal of Digital Imaging. 2023;36:1447-1459. https://doi.org/10.1007/s10278-023-00830-z
- Shi W, Xu T, Yang H, Xi Y. Du Y, Li J, Li J. Attention gate based dual-pathway network for vertebra segmentation of X-ray spine images. IEEE Journal of Biomedical and Health Informatics. 2022;26(8):3976-3987. https://doi.org/10.1109/JBHI.2022.3158968
- Hwang HS, Kim DH, Kim HC. Study on the Application of Artificial Intelligence Model for CT Quality Control. Journal of Biomedical Engineering Research. 2023;44:182-189. https://doi.org/10.9718/JBER.2023.44.3.182
- Hwang HS. A study of CT phantom image quality control evaluation method based on deep learning. Eulji University Graduate School: Daejeon. 2024.
- Peck D. Digital Imaging and Communications in Medicine (DICOM): a practical introduction and survival guide. Soc Nuclear Med. 2009;50(8):1384.
- Bidgood WD, Horii SC, Prior FW, Syckle DE. Understanding and using DICOM, the data interchange standard for biomedical imaging. Journal of the American Medical Informatics Association. 1997;4(3):199-212. https://doi.org/10.1136/jamia.1997.0040199
- Horwath JP, Zakharov DN, Megert R, Stach EA. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images. npj Computational Materials. 2020.;6(1):108.
- Ketkar N, Santana E. Deep learning with Python. Springer. 2017:1-469.
- Everingham M, Eslami SMA, Gool LV, Williams CKI, Winn J, Zisserman A. The pascal visual object classes challenge: A retrospective. International journal of computer vision. 2015;111:98-136. https://doi.org/10.1007/s11263-014-0733-5
- Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation. in International symposium on visual computing. Springer. 2016:234-244.
- Csurka G, Larlus G, Perronnin F. What is a good evaluation measure for semantic segmentation? in Bmvc. Bristol. 2013:1-11.
- Rezatofighi H, Tsoi N, Gwak JY, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:658-666.
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. in Medical Image Computing and Computer-Assisted Intervention-MICCAI. Springer. 2015:234-241.
- Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. in Proceedings of the European conference on computer vision (ECCV). 2018:801-818.
- Sun K, Xiao B, Liu D, Wang J. Deep high-resolution representation learning for human pose estimation. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:5693-5703.
- Zhou B, Khosia A, Lapedriza A, Olivba A, Torralba A. Learning deep features for discriminative localization. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:2921-2929.
- Lin MQ, Chen Q, Yan S. Network in network. arXiv preprint arXiv:1312.4400. 2013:1-10.
- Qian Z, Hayes TL, Kafle K, Kanan C. Do we need fully connected output layers in convolutional networks? arXiv preprint arXiv:2004.13587. 2020:1-8.
- Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853. 2015:1-5.
- Hu J, Shen L, Sun G. Squeeze-and-excitation networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018:7132-7141.