DOI QR코드

DOI QR Code

MQTT 기반 IoT 네트워크에서 공유 구독을 위한 비용 관리 최적 전송 방식

Cost-aware Optimal Transmission Scheme for Shared Subscription in MQTT-based IoT Networks

  • 이선빈 (공주대학교 정보통신공학과) ;
  • 김영훈 (공주대학교 정보통신공학과) ;
  • 김용은 (공주대학교 정보통신공학과) ;
  • 최재윤 (공주대학교 정보통신공학과) ;
  • 경연웅 (공주대학교 정보통신공학과)
  • Seonbin Lee (Division of Information & Communication Engineering, Kongju National University) ;
  • Younghoon Kim (Division of Information & Communication Engineering, Kongju National University) ;
  • Youngeun Kim (Division of Information & Communication Engineering, Kongju National University) ;
  • Jaeyoon Choi (Division of Information & Communication Engineering, Kongju National University) ;
  • Yeunwoong Kyung (Division of Information & Communication Engineering, Kongju National University)
  • 투고 : 2024.06.27
  • 심사 : 2024.08.07
  • 발행 : 2024.08.31

초록

기술이 발전함에 따라 Internet of Things(IoT)기술 또한 빠르게 발전하고 있다. IoT 기술에는 Message Queuing Telemetry Transport(MQTT)를 포함한 다양한 프로토콜이 사용되고 있다. MQTT는 경량 메시지 프로토콜로 제한된 대역폭과 전력을 가진 환경에서도 효율적으로 데이터를 전송할 수 있어 IoT 분야에서 de-facto 표준 프로토콜로 고려되고 있다. 본 논문에서는 MQTT 5.0의 기능인 공유구독에서 메시지 전송 방식을 개선한 방식을 제안하고자 한다. 공유구독에서 메시지 전송 방식 중 대중적으로 사용되는 라운드 로빈 방식은 Client의 현재 상태를 고려하지 않는다는 단점이 있다. 이러한 단점을 보완하기 위해 본 논문에서는 현재 상태를 고려하여 최적의 전송 방식을 선정하는 방법을 제안한다. 이때 Markov decision process(MDP)를 기반으로 모델링을 수행하고, Q-Learning을 이용하여 최적의 전송 방식을 선정하였다. 시뮬레이션 결과를 통해 제안한 방식과 기존에 사용되는 방식들을 비교하여 다양한 환경에서 성능 분석을 진행해 제안한 방식이 기존 방식들보다 더 좋은 성능을 보이는 것을 확인하고, 향후 연구의 방향성을 제시하면서 본 논문을 마무리하고자 한다.

As technology advances, Internet of Things (IoT) technology is rapidly evolving as well. Various protocols, including Message Queuing Telemetry Transport (MQTT), are being used in IoT technology. MQTT, a lightweight messaging protocol, is considered a de-facto standard in the IoT field due to its efficiency in transmitting data even in environments with limited bandwidth and power. In this paper, we propose a method to improve the message transmission method in MQTT 5.0, specifically focusing on the shared subscription feature. The widely used round-robin method in shared subscriptions has the drawback of not considering the current state of the clients. To address this limitation, we propose a method to select the optimal transmission method by considering the current state. We model this problem based on Markov decision process (MDP) and utilize Q-Learning to select the optimal transmission method. Through simulation results, we compare our proposed method with existing methods in various environments and conduct performance analysis. We confirm that our proposed method outperforms existing methods in terms of performance and conclude by suggesting future research directions.

키워드

과제정보

This work was supported by the research grant of Kongju National University Industry-University cooperation foundation in 2024.

참고문헌

  1. C.Choi., "A Study On IoT Data Consistency in IoT Environment," Journal of The Korea Internet of Things Society, Vol.8, No.5, pp.127-132, 2022.
  2. Y.Kyung, T.Kim, and Y.Kim, "Retained Message Delivery Scheme utiliting Reinforcement Learning in MQTT-based IoT Networks," Journal of The Korea Internet of Things Society, Vol.10, No.2, pp.131-135, 2024.
  3. H.Ko and Y.Kyung, "Performance Analysis and Optimization of Delayed Offloading System With Opportunistic Fog Node," IEEE Transactions on Vehicular Technology, Vol.71, No.9, pp.10203-10208, 2022. https://doi.org/10.1109/TVT.2022.3179658
  4. T.Song and Y.Kyung, "Deep Reinforcement Learning Based AoI-aware Active Queue Management for IoT Sensor Networks," IEEE Internet of Things Journal, Vol.11, No.9, pp.16700-16709, 2024. https://doi.org/10.1109/JIOT.2024.3355410
  5. H. Hosseinian and H. Damghani, "Smart home energy management, using IoT system," in Proc. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, pp.905-910, 2019.
  6. S. Kraijak and P. Tuwanut, "A survey on internet of things architecture, protocols, possible applications, security, privacy, real-world implementation and future trends," in Proc. 2015 IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, pp.26-31, 2015.
  7. Y.Kyung, J.Sung, H.Ko, T.Song, and Y.Kim, "Priority-Aware Actuation Update Scheme in Heterogeneous Industrial Networks," Sensors, Vol.24, No.2, pp.1-15, 2024. https://doi.org/10.1109/JSEN.2023.3344013
  8. F.Buccafurri, V.D.Angelis, and S.Lazzaro, "MQTT-I: Achieving End-to-End Data Flow Integrity in MQTT," IEEE Transactions on Dependable and Secure Computing, Early Access, pp.1-18, 2024.
  9. OASIS, MQTT Version 5.0. OASIS Standard, 2019.
  10. K.Govindan and A.P.Azad, "End-to-end service assurance in IoT MQTT-SN," in Proc. 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp.290-296, 2015.
  11. E.Longo and A.E.Redondi, "Design and implementation of an advanced MQTT broker for distributed pub/sub scenarios," Computer Networks, Vol.224, pp.1-12, 2023.
  12. H. Mohammed, Z. Chen and W. Chen, "Energy-Efficient Joint Pushing and Caching Based on Markov Decision Process," IEEE Transactions on Green Communications and Networking, vol.3, no.2, pp.433-445, 2019. https://doi.org/10.1109/TGCN.2019.2894870
  13. A. Antonic and M. Antonic, "Performance Modeling of Publish/Subscribe Middleware Components," in Proc. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, pp.1628-1633, 2020.
  14. L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang and M. Wang, "Status Update in IoT Networks: Age-of-Information Violation Probability and Optimal Update Rate," IEEE Internet of Things Journal, Vol.8, No.14, pp.11329-11344, 2021. https://doi.org/10.1109/JIOT.2021.3051722
  15. M. L. Mari-Altozano, S. S. Mwanje, S. L. Ramirez, M. Toril, H. Sanneck and C. Gijon, "A Service-Centric Q-Learning Algorithm for Mobility Robustness Optimization in LTE," IEEE Transactions on Network and Service Management, Vol.18, No.3, pp.3541-3555, 2021. https://doi.org/10.1109/TNSM.2021.3073244