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ABSTRACT

BACKGROUND/OBJECTIVES: The high consumption of purine-rich meat is associated 
with hyperuricemia. However, there is limited evidence linking the consumption of red 
and processed meat to the genetic risk of hyperuricemia. We investigated the relationship 
between various combinations of red and processed meat consumption and the polygenic 
risk scores (PRSs) and the incidence of hyperuricemia in middle-aged Koreans.
SUBJECTS/METHODS: We analyzed the data from 44,053 participants aged ≥40 
years sourced from the Health Examinees (HEXA) cohort of the Korean Genome and 
Epidemiology Study (KoGES). Information regarding red and processed meat intake was 
obtained using a semiquantitative food frequency questionnaire (SQ-FFQ). We identified 
69 independent single-nucleotide polymorphisms (SNPs) at uric acid-related loci using 
genome-wide association studies (GWASs) and clumping analyses. The individual PRS, 
which is the weighted sum of the effect size of each allele at the SNP, was calculated. We 
used multivariable Cox proportional hazards models adjusted for covariates to determine 
the relationship between red and processed meat intake and the PRS in the incidence of 
hyperuricemia.
RESULTS: During an average follow-up period of 5 years, 2,556 patients with hyperuricemia 
were identified. For both men and women, the group with the highest red and processed 
meat intake and the highest PRS was positively associated with the development of 
hyperuricemia when compared with the group with the lowest red and processed meat intake 
and the lowest PRS (hazard ratio [HR], 2.72; 95% confidence interval [CI], 2.10–3.53; P < 
0.0001; HR, 3.28; 95% CI, 2.45–4.40; P < 0.0001).
CONCLUSION: Individuals at a high genetic risk for uric acid levels should moderate their 
consumption of red and processed meat to prevent hyperuricemia.

Keywords: Red meat; meat products; genetic risk score; hyperuricemia

INTRODUCTION

Hyperuricemia, characterized by elevated serum uric acid levels [1], is an independent risk 
factor for chronic kidney disease [2], hypertension [3], diabetes [4], cardiovascular disease 
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(CVD) [5], and all-cause mortality [6]. With a steady increase in the worldwide incidence 
of hyperuricemia, the condition has emerged as a public health concern [7,8]. It is now 
understood that endogenous overproduction due to elevated levels of purine breakdown, 
decreased urate excretion, or a combination of both, may raise the risk of hyperuricemia [9].

The prevalence of hyperuricemia in the United States and South Australia was 14.6% in 
2015–2016 [10] and 16.6% in 2008–2010 [11], respectively. The prevalence of hyperuricemia 
in China has been on the rise and was reported to be 11.1% in 2015–2016 and 14.0% in 
2018–2019 [12]. The prevalence of hyperuricemia in Korea between 2019 and 2020 was 14.6% 
[13]. In addition, the prevalence of gout in Korea has increased 4.4-fold (0.17% in 2001 to 
0.76% in 2015) over 15 yrs [14, 15]. These rising numbers clearly suggest that the prevention 
and management of hyperuricemia are crucial for managing comorbid conditions.

Serum uric acid levels reflect current dietary habits [16]. Several food groups, including red 
and processed meats, can affect uric acid levels. These meats are high in purines, which are 
metabolized into uric acid in the human body [17-19], and their excessive consumption can 
lead to overproduction and an overall increase in uric acid levels [18,20]. Epidemiological 
evidence has suggested a positive correlation between serum uric acid levels and meat intake 
in Chinese [21], and American adults, with the latter data obtained from the National Health 
and Nutrition Examination Survey (NHANES) III [18].

In addition to lifestyle factors, important genetic factors associated with uric acid production 
and excretion have been identified in previous genome-wide association studies (GWAS) 
[22-25]. In GWAS involving over 143,160 participants of European ancestry [26] and 457,690 
participants of trans-ancestry [27], the solute carrier family 2 member 9 (SLC2A9) and ATP 
binding cassette subfamily G member 2 (ABCG2) genes were identified as being associated 
with hyperuricemia. Notably, there exists a Eurocentric bias in global GWAS, as a result 
of which the non-European populations are being disproportionately overlooked [28,29]. 
Although more than 180 loci related to serum uric acid have been identified in previous 
ancestral GWAS [27,30], identifying additional genetic variants in the Korean population and 
exploring unrevealed heritability through a structured assessment of the differential effects of 
common and rare variants are crucial.

In polygenic diseases, the presence of single variants may not be sufficient to assess the 
actual disease risk. This requires the identification of a sufficiently informative measure of 
the genetic load using a combined set of multiple risk variants. The polygenic risk score (PRS) 
is a useful tool wherein the data across multiple loci is combined to evaluate the genetic 
risk, which is the weighted sum of the number of risk alleles in an individual [31]. The PRS, 
which is calculated based on genotype profiles and associated GWAS data, is the estimated 
quantified value of an individual's alleles for a trait or disease [32]. Stratifying individuals at 
high polygenic risk can help in the selection of a diagnosis or treatment early in the course 
of the disease and the prediction of subsequent disease states, thus providing clinical utility 
[29,33-35]. Despite methodological concerns regarding PRS development and the validity of 
its criteria [36], PRS is a good predictor of disease status [33-35]. However, data regarding the 
relationship between hyperuricemia and PRS are lacking.

Several studies have shown a link between hyperuricemia and the consumption of red 
and processed meat [18,20,21] and between hyperuricemia and specific genes [22-27,30]. 
However, few studies have investigated the association between the intake of red and 
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processed meat, PRS, and hyperuricemia. Moreover, no study has used a prospective cohort 
design to clarify this relationship among Korean adults. Therefore, we hypothesized that 
different combinations of red and processed meat intakes and PRS could influence the 
development of hyperuricemia in middle-aged Koreans. To confirm this, we performed a 
GWAS of uric acid levels in middle-aged Korean adults and assessed the genetic influences by 
calculating the individual PRS using identified single nucleotide polymorphisms (SNPs).

SUBJECTS AND METHODS

Study population and participant selection
This study was performed using data from the Korean Genome and Epidemiology Study 
(KoGES), which is a large population-based study that investigates the association of genetic 
and environmental factors with various chronic diseases [37]. From the available data, we 
selected data from the KoGES Health Examinees (HEXA) cohort, which included urban-
dwelling participants aged 40 yrs or older. Baseline data were gathered from 2004 to 2013, 
and follow-up data were gathered from 2012 to 2016. Of the total 173,208 participants, 
those without the genotype data of the 69 identified SNPs (n = 114,508), without data on 
uric acid levels (n = 6,246), with no or implausible data (less than 500 kcal/day or greater 
than 5,000 kcal/day) on energy intake (n = 669), without data on covariates (n = 4,839), with 
hyperuricemia (serum uric acid level exceeding 7.0 mg/dL in men and exceeding 6.0 mg/dL 
in women) at baseline, or with missing data on the number of person-yrs of follow-up (n = 
2,893) were excluded. The study finally included 44,053 participants (14,480 men and 29,573 
women) (Fig. 1). At the end of follow-up, participants with hyperuricemia were defined as 
the study group, and participants without hyperuricemia were defined as the control group. 
The Institutional Review Board (IRB) of Inha University approved the use of these data on 
February 18, 2022 (IRB number: 220215-1A). This study was conducted using bioresources 
from the National Biobank of Korea, the Korea Disease Control and Prevention Agency, 
Republic of Korea (KBN-2020-016).

Dietary survey and assessment
The dietary intake of the participants was examined using a semiquantitative food frequency 
questionnaire (SQ-FFQ) that included 106 food items [38]. The SQ-FFQ was administered at 
baseline and comprised nine frequency items ranging from “never/rarely” to “three or more 
times a day” and three intake items: 0.5, 1.0, and 2 standard portion sizes. The usual intake 
of the 106 foods and beverages was converted to daily intake (g) by multiplying the intake 
frequency by the standard portion size [39]. The daily intake of foods included in each food 
group was added and analyzed to obtain the daily intake by food group (g/day). Of the 106 
food items included in the SQ-FFQ, red meat comprised roasted beef, roasted pork, stewed 
pork, pork belly, and edible viscera; processed meat included sausage and ham; and white 
meat included chicken and chicken stew [40]. The classification of food groups, including 
fish, shellfish, vegetables, fruits, and legumes, was based on the guidelines from the KoGES 
database [41]. An individual’s total energy and nutrient intake was determined by multiplying 
the intake frequency of each food by the corresponding calories and nutrients and then 
summing up the results for all the foods [42].

Genotyping
Genomic DNA was obtained from peripheral whole-blood samples. For the imputed 
genotype, data were generated from the Korea Biobank Array (Korean Chip, KCHIP, Seoul, 
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Korea), which was previously used to study the genetic drivers of diseases in the Korean 
population [43]. The exclusion criteria were as follows: high rates of missed genotype calls 
(> 4%), genotype reading accuracy < 98%, heterozygosity > 30%, and sex mismatch [44,45]. 
Following genotyping and sample quality control, the GWAS was executed after normalizing 
for age and sex to select the SNPs significantly related to the participants’ uric acid levels 
(P-value < 5 × 10−8). Clumping analysis in PLINK version 1.9 was used to identify independent 
SNPs using the following criteria: genomic distance (< 1,000 kb), linkage disequilibrium (LD, 
r2 < 0.01), and P-value (< 5 × 10−8) [46].

Calculation of weighted PRS
A total of 73 independent SNPs were identified using clumping analysis. The locations of 
the 73 SNPs were confirmed using the Genome Reference Consortium Human Genome 
Build 37, National Center for Biotechnology Information [47]. After excluding SNPs whose 
exact location was unknown, 69 SNPs were ultimately selected for the PRS analysis (Fig. 2). 
In this study, the SNPs identified in the GWAS were weighted by multiplying by the effect 
size corresponding to each allele. Thereafter, individual weighted PRSs were calculated by 
summing all weighted risk alleles, Ni, by the effect size βi, as shown in Equation 1 [48,49].

724https://doi.org/10.4162/nrp.2024.18.5.721

Meat intake, genetic risk, and hyperuricemia in middle-aged Koreans

https://e-nrp.org

Total study population in the KoGES-HEXA
(n = 173,208)

n = 58,700

n = 52,454

n = 51,785

n = 46,946

Final study participants
(n = 44,053)

Participants who had no data for 69 SNPs genotype
(n = 114,508)

Participants who had no data for uric acid levels
(n = 6,246)

Participants with missing information on covariates
(n = 4,839)

Participants with hyperuricemia in baseline and
participants who had no data for person year

(n = 2,893)

Participant with no or implausible data
(< 500 kcal/day or > 5,000 kcal/day) on energy intake

(n = 669)

Men
(n = 14,480)

Women
(n = 29,573)

Fig. 1. Flow diagram showing the participant exclusion process. 
KoGES, Korean Genome and Epidemiology Study; HEXA, Health Examinees; SNP, single-nucleotide polymorphism.



 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑊𝑊𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ 𝛽𝛽𝑖𝑖𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (Equation 1) 

 

The PRS was classified into low, middle, and high tertiles for men and women. The mean 
values and ranges for each tertile group were as follows: for men, low was −0.92 (range, 
−6.51 to −0.37), middle −0.18 (range, −0.37 to 0.01), and high 0.29 (range, 0.01 to 1.47); for 
women, low was −0.85 (range, −5.11 to −0.34), middle −0.15 (range, −0.34 to 0.03), and high 
0.31 (range, 0.03 to 1.77).

Definition of hyperuricemia
The definition of hyperuricemia was set as follows: serum uric acid level exceeding 7.0 mg/dL 
in men and 6.0 mg/dL in women [50-53].

Blood samples were collected after overnight fasting. Serum uric acid concentrations were 
measured using enzymatic colorimetric methods with an automatic analyzer (ADVIA 1650 
and 1800; Siemens, Tarrytown, NY, USA) [54]. Baseline measurements were conducted from 
2004 to 2013, and follow-up measurements were completed from 2012 to 2016 [55]. The 
analysis ended on the date of follow-up [42].

Assessment of other variables
Self-administered questionnaires were used to collect sociodemographic and health-related 
lifestyle data. Education was categorized into four groups: less than elementary school, 
middle school, high school, and college or beyond. Drinking status was divided into three 
groups: “current drinker” (consuming alcohol at the time of the survey), “past drinker” (had 
been drinking but quit), and “non-drinker” (had never consumed alcohol). Smoking status 
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To select 11,145 SNPs involved in uric acid levels from the GWAS
with adding age and sex as a covariate at P < 5 × 10−8 

11,145 SNPs

To conduct clumping analysis using LD with r2 < 0.01 and to remain 73 SNPs

To verify whether they were included in the genome browser database and remain 69 SNPs

To construct the PRS from genetic variants of the optimal model

To categorize 3 groups by the tertiles of the PRS for interactions
with red and processed meat and hyperuricemia

To analyze the association of PRS and red and processed meat interaction for hyperuricemia

KoGES HEXA
data

Korean Chip
(KCHIP)

data

GWAS
associated with
uric acid levels

P < 5 × 10−8 

Fig. 2. Flow diagram for generating polygenic variants that affect uric acid levels and exploring the combinations 
between PRS and red and processed meat consumption influencing the incidence of hyperuricemia. 
PRS, polygenic risk score; SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; KoGES, 
Korea Genome and Epidemiology Study; HEXA, Health Examinees; LD, linkage disequilibrium.



was divided into three groups: “current smoker” (≥ 100 cigarettes over the lifetime and were 
smoking at the time of the survey), “past smoker” (≥ 100 cigarettes over the lifetime but 
were currently quitting at the time of the survey), or “non-smoker” (< 100 cigarettes over the 
lifetime) [56]. Physical activity was categorized as: “active” (performed physical activity for 
at least 30 min daily for at least 5 days a week) or “inactive” [57]. Regarding the presence of 
hypertension, diabetes, or hyperlipidemia, participants answered yes or no to whether they 
had previously been diagnosed [51].

The health examination included anthropometric measurements and serum laboratory 
tests. All anthropometric measurements were obtained by trained and skilled examiners 
using a consistent and standardized methodology. Body mass index (BMI) was calculated by 
dividing the weight in kilograms by the square of the height in meters (kg/m2). Systolic and 
diastolic blood pressures were measured twice on the right arm using a standardized mercury 
or automatic sphygmomanometer, and the mean of the 2 blood pressures was recorded 
[58]. All blood samples were obtained after the participants had fasted overnight. Blood 
concentrations of glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, 
triglycerides, albumin, creatinine were measured by enzymatic colorimetric methods using 
an automated analyzer (ADVIA 1650 and 1800; Siemens) [58,59].

Statistical analyses
The demographics of the participants were compared by categorizing them according to 
their hyperuricemia status and PRS. Continuous variables were expressed as the mean ± SD 
using the t-test and general linear model, and post-hoc comparisons were performed using the 
Bonferroni correction. Categorical variables were expressed as frequencies (%) using the χ2 
test. Genetic analysis was performed using the PLINK version 1.9 software (https://www.cog-
genomics.org/plink/1.9, accessed on June 19, 2023).

To analyze the relationship between the consumption of red and processed meat and 
hyperuricemia and the relationship between the combination of red and processed 
meat intake and the PRS and hyperuricemia, the quantum of red and processed meat 
intake was classified into tertiles for men and women. The independent variables were 
red and processed meat intake and the PRS, whereas the dependent variable was set as 
hyperuricemia.

A multivariable Cox proportional hazards model was used to ascertain the hazard ratios 
(HRs) and 95% confidence intervals (CIs) for the following outcomes: consumption of red 
and processed meats and hyperuricemia, PRS and hyperuricemia, and various combinations 
of red and processed meat intake and PRS and hyperuricemia. P-values for the linear 
trend and interaction were also calculated. This analysis was performed after adjusting 
for age, income, education, drinking/smoking status, regular exercise, BMI, total energy 
intake, protein intake, intake of white meat, fish, shellfish, fruit, vegetables, and legumes, 
hypertension, diabetes mellitus, and hyperlipidemia. All models were evaluated to confirm 
the assumption of proportional hazards and were considered consistent with the models 
that included time-dependent covariates. SAS version 9.4 (SAS Institute, Cary, NC, USA) was 
used for all statistical analyses except for the genetic analyses. The criterion for statistical 
significance was set at P < 0.05.
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RESULTS

Characteristics of the study participants based on hyperuricemia status
Table 1 presents the demographic characteristics of the participants included in the study 
based on their hyperuricemia status. The average follow-up period was 5 yrs, and 2,556 cases of 
hyperuricemia were recorded. The participants were divided into groups with hyperuricemia 
(n = 2,556) and without hyperuricemia (n = 41,497) at the end of the average 5 yrs follow-up. 
The percentage of PRS differed significantly between men and women (P < 0.05). The group 
without hyperuricemia had a higher proportion of low- and mid-PRS subjects, whereas the 
proportion of high-PRS subjects was higher in the hyperuricemia group. Both men and 
women in the hyperuricemia group were older than those in the group without hyperuricemia 
(P < 0.05). Significant differences in education and income levels were identified only among 
the women. The number of participants who attended high school in both the groups with and 
without hyperuricemia was significantly higher than that of participants in the other education 
categories (elementary, middle school, and ≥ college). The rate of the lowest-income group 
was much lower than that of the middle- or highest-income groups. There were significant 
differences in the smoking status between men and women. Among men, the percentage of 
past-smokers was significantly higher than that of non/current smokers in both the groups 
with and without hyperuricemia (all P < 0.05). Among women, the percentage of non-smokers 
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Table 1. Demographic characteristics of Korean adult participants based on their hyperuricemia status
Variables Men P-value Women P-value

Hyperuricemia  
(n = 1,400)

No hyperuricemia  
(n = 13,080)

Hyperuricemia  
(n = 1,156)

No hyperuricemia  
(n = 28,417)

PRS1)

Low-PRS 288 (20.6) 4,538 (34.7) < 0.0001 191 (16.5) 9,666 (34.0) < 0.0001
Mid-PRS 436 (31.1) 4,391 (33.6) 351 (30.4) 9,507 (33.5)
High-PRS 676 (48.3) 4,151 (34.7) 614 (53.1) 9,244 (32.5)
Age (yrs) 54.70 ± 8.80 55.22 ± 8.39 0.0375 55.15 ± 7.66 52.81 ± 7.63 < 0.0001

Education 0.2543 < 0.0001
≤ Elementary school 108 (7.7) 1,174 (9.0) 264 (22.8) 4,932 (17.4)
Middle school 170 (12.1) 1,645 (12.6) 256 (22.2) 5,032 (17.7)
High school 573 (40.9) 5,411 (41.4) 466 (40.3) 12,575 (44.3)
≥ College 549 (39.2) 4,850 (37.1) 170 (14.7) 5,878 (20.7)

Income 0.3249 < 0.0001
Lowest 119 (8.5) 1,127 (8.6) 179 (15.5) 3,268 (11.5)
Middle 581 (41.5) 5,683 (43.5) 556 (48.1) 12,451 (43.8)
Highest 700 (50.0) 6,270 (47.9) 421 (36.4) 12,698 (44.7)

Smoking status 0.0002 0.0022
Non-smokers 340 (24.3) 3,808 (29.1) 1,105 (95.6) 27,618 (97.2)
Past smokers 624 (44.6) 5,669 (43.3) 17 (1.5) 333 (1.2)
Current smokers 436 (31.1) 3,603 (27.6) 34 (2.9) 466 (1.6)

Alcohol consumption < 0.0001 0.9606
Non-drinkers 201 (14.4) 2,832 (21.7) 784 (67.8) 19,380 (68.2)
Past drinkers 93 (6.6) 984 (7.5) 20 (1.7) 477 (1.7)
Current drinkers 1,106 (79.0) 9,264 (70.8) 352 (30.5) 8,560 (30.1)

Physical activity
Inactive 568 (406) 5,218 (39.9) 0.6223 585 (50.6) 13,174 (46.4) 0.0046
Active 832 (59.4) 7,862 (60.1) 571 (49.4) 15,243 (53.6)
Hypertension 411 (29.4) 2,942 (22.5) < 0.0001 387 (33.5) 4,576 (16.1) < 0.0001
Diabetes mellitus 123 (8.8) 1,368 (10.5) 0.0503 105 (9.1) 1,382 (4.9) < 0.0001
Hyperlipidemia 183 (13.1) 1,310 (10.0) 0.0004 191 (16.5) 2,816 (9.9) < 0.0001

Categorical variables are presented as numbers (%), and continuous variables are presented as mean ± SD. P-values were determined using the t-test for 
continuous variables and the χ2 test for categorical variables.
PRS, polygenic risk score.
1)The PRS distribution was categorized into low, middle, and high tertiles, with mean values as follows: low −0.92 (range −6.51 to −0.37), middle −0.18 (−0.37 to 
0.01), and high 0.29 (0.01 to 1.47) in men; low −0.85 (range −5.11 to −0.34), middle −0.15 (−0.34 to 0.03), and high 0.31 (0.03 to 1.77) in women.



was significantly higher than that of past/current smokers in both the groups with and 
without hyperuricemia (all P < 0.05). Furthermore, significant differences in the drinking 
status were only observed in men, and the percentage of current drinkers was significantly 
higher than the non/past drinkers in both the groups with and without hyperuricemia (all 
P < 0.05). Significant differences in physical activity were observed only among women. 
The hyperuricemia group had a higher proportion of women who did not exercise regularly 
compared to the group without hyperuricemia (P < 0.05). The diagnoses of hypertension 
and dyslipidemia also significantly differed between men and women. The rates of 
hypertension and dyslipidemia were higher in the hyperuricemia group versus group without 
hyperuricemia in both men and women (all P < 0.05). In women, a significant contrast was 
observed in the diagnosis of diabetes, which was observed more in the hyperuricemia group 
than in the group without hyperuricemia (P < 0.05).

The anthropometric, biochemical, and dietary data of the participants included in the study 
based on their hyperuricemia status are presented in Table 2. The BMI, systolic and diastolic 
blood pressure, triglyceride levels, HDL cholesterol levels, and creatinine levels were significantly 
higher in the hyperuricemia group than in the group without hyperuricemia for both men and 
women (all P < 0.05). Women with hyperuricemia had higher fasting blood glucose and total 
cholesterol levels (all P < 0.05). The differences in food group intake according to the presence 
or absence of hyperuricemia in men and women were as follows: in men, significant differences 
were observed in total meat intake and red and processed meat intake, with the hyperuricemia 
group having a higher intake of these foods than the group without hyperuricemia (P < 0.05); in 
women, a significant difference was found only in shellfish intake, with the hyperuricemia group 
consuming more shellfish than the group without hyperuricemia.
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Table 2. Anthropometric, biochemical, and dietary data of Korean adult participants based on their hyperuricemia status
Variables Men P-value Women P-value

Hyperuricemia  
(n = 1,400)

No hyperuricemia  
(n = 13,080)

Hyperuricemia  
(n = 1,156)

No hyperuricemia  
(n = 28,417)

BMI (kg/m2) 24.91 ± 2.59 24.22 ± 2.65 < 0.0001 24.97 ± 3.19 23.49 ± 2.84 < 0.0001
Blood pressure

Systolic blood pressure (mmHg) 127.43 ± 13.94 124.99 ± 13.97 < 0.0001 125.90 ± 15.95 120.19 ± 14.63 < 0.0001
Diastolic blood pressure (mmHg) 79.47 ± 9.51 78.00 ± 9.40 < 0.0001 76.92 ± 9.82 74.15 ± 9.37 < 0.0001
Glucose (mg/dL) 99.22 ± 22.39 99.27 ± 23.17 0.9459 96.16 ± 23.66 92.14 ± 16.71 < 0.0001
Total cholesterol (mg/dL) 190.71 ± 33.59 190.85 ± 34.28 0.8888 201.46 ± 37.85 199.03 ± 35.22 0.0322
HDL cholesterol (mg/dL) 47.69 ± 11.34 49.59 ± 11.88 < 0.0001 52.54 ± 12.46 56.00 ± 12.82 < 0.0001
Triglycerides (mg/dL) 168.00 ± 116.68 140.06 ± 96.34 < 0.0001 137.45 ± 75.02 110.49 ± 71.19 < 0.0001
Albumin (mg/dL) 4.67 ± 0.26 4.66 ± 0.25 0.4347 4.58 ± 0.25 4.59 ± 0.24 0.3724
Creatinine (mg/dL) 0.98 ± 0.16 0.95 ± 0.14 < 0.0001 0.76 ± 0.13 0.72 ± 0.11 < 0.0001

Nutritional intake
Total calories (kcal/day) 1,841.52 ± 511.25 1,846.28 ± 501.98 0.7364 1,664.28 ± 505.12 1,691.86 ± 512.49 0.0727
Protein (g/day) 62.79 ± 24.42 62.21 ± 23.56 0.3824 56.91 ± 23.86 57.25 ± 23.10 0.6264
Fat (g/day) 30.37 ± 17.17 29.86 ± 16.51 0.2926 25.63 ± 16.28 26.34 ± 15.77 0.1314
Carbohydrates (g/day) 324.09 ± 83.01 326.91 ± 82.42 0.2227 298.11 ± 83.28 302.92 ± 87.32 0.0552

Food group intake
Total meat intake (g/day) 46.92 ± 46.55 43.40 ± 44.05 0.0070 32.33 ± 45.93 33.84 ± 40.56 0.2713
Red and processed meat intake (g/day) 42.35 ± 43.59 39.23 ± 41.35 0.0104 28.86 ± 43.33 30.08 ± 37.77 0.3458
White meat intake (g/day) 4.56 ± 7.90 4.17 ± 6.17 0.0733 3.47 ± 5.30 3.76 ± 6.72 0.0721
Fish intake (g/day) 29.96 ± 30.62 28.64 ± 28.14 0.1211 28.88 ± 28.05 28.08 ± 29.40 0.3393
Shellfish intake (g/day) 13.44 ± 16.70 12.67 ± 16.44 0.0942 13.45 ± 20.69 11.99 ± 16.14 0.0179
Vegetable intake (g/day) 265.41 ± 179.17 259.87 ± 174.75 0.2612 246.94 ± 166.64 246.64 ± 167.60 0.9515
Fruit intake (g/day) 177.98 ± 180.88 180.86 ± 179.19 0.5680 237.80 ± 213.35 242.42 ± 228.11 0.4717
Legume intake (g/day) 19.12 ± 17.10 19.64 ± 18.63 0.2854 19.64 ± 18.75 19.70 ± 18.61 0.9078

Categorical variables are presented as numbers (%), and continuous variables are presented as mean ± SD. P-values were determined using the t-test for 
continuous variables and the χ2 test for categorical variables.
BMI, body mass index; HDL, high-density lipoprotein.



Characteristics of the study participants based on the PRS tertiles
The demographic characteristics of the participants included in the study based on the 
tertiles of the PRS are presented in Table 3. A significant difference in educational levels 
was only observed among women, with the highest proportion of women educated up to 
high school level among all the PRS groups (P < 0.05). Furthermore, a significant difference 
in the incidence of hypertension was observed among women, with a higher incidence of 
hypertension observed in the high-PRS group than in the low- and mid-PRS groups (P < 
0.05). No meaningful associations with the PRS were observed for the other variables in 
either men or women.

Table 4 presents the anthropometric, biochemical, and dietary data of the participants included 
in the study based on the tertiles of the PRS. The BMI differed significantly for both men 
and women and was higher in the low-PRS group than in the high-PRS group (P < 0.05). The 
triglyceride levels differed significantly between the men and women. In men, the triglyceride 
levels were lower in the low-PRS group than in the mid- and high-PRS groups, whereas in 
women, the triglyceride levels were lower in the low-PRS group than in the high-PRS group 
(P < 0.05). Albumin levels differed significantly only among women. The albumin levels were 
higher in the high-PRS group than in the low- or mid-PRS groups (P < 0.05). No meaningful 
associations with the PRS were observed for the other variables in either men or women.
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Table 3. Demographic characteristics of Korean adult participants based on the tertiles of the PRS
Variables Men P-value Women P-value

Low-PRS1)  
(n = 4,826)

Mid-PRS  
(n = 4,827)

High-PRS  
(n = 4,827)

Low-PRS  
(n = 9,857)

Mid-PRS  
(n = 9,858)

High-PRS  
(n = 9,858)

Age (yrs) 55.20 ± 8.45 55.03 ± 8.42 55.27 ± 8.42 0.3427 52.95 ± 7.72 52.98 ± 7.65 52.78 ± 7.56 0.1537
Education 0.1598 0.0444

≤ Elementary school 404 (8.4) 415 (8.6) 463 (9.6) 1,739 (17.6) 1,783 (18.1) 1,674 (17.0)
Middle school 644 (13.3) 594 (12.3) 577 (12.0) 1,768 (17.9) 1,776 (18.0) 1,744 (17.7)
High school 1,996 (41.4) 2,013 (41.7) 1,975 (40.9) 4,263 (43.3) 4,310 (43.7) 4,468 (45.3)
≥ College 1,782 (36.9) 1,805 (37.4) 1,812 (37.5) 2,087 (21.2) 1,989 (20.2) 1,972 (20.0)

Income 0.4406 0.5579
Lowest 394 (8.2) 435 (9.0) 417 (8.6) 1,177 (11.9) 1,146 (11.6) 1,124 (11.4)
Middle 2,126 (44.1) 2,049 (42.5) 2,089 (43.3) 4,356 (44.2) 4,349 (44.1) 4,302 (43.6)
Highest 2,306 (47.8) 2,343 (48.5) 2,321 (48.1) 4,324 (43.9) 4,363 (44.3) 4,432 (45.0)

Smoking status 0.5394 0.7725
Non-smokers 1,390 (28.8) 1,353 (28.0) 1,405 (29.1) 9,560 (97.0) 9,585 (97.2) 9,578 (97.2)
Past smokers 2,074 (43.0) 2,105 (43.6) 2,114 (43.8) 119 (1.2) 118 (1.2) 113 (1.2)
Current smokers 1,362 (28.2) 1,369 (28.4) 1,308 (27.1) 178 (1.8) 155 (1.6) 167 (1.7)

Alcohol consumption 0.1698 0.7379
Non-drinkers 1,000 (20.7) 1,019 (21.1) 1,014 (21.0) 6,748 (68.5) 6,736 (68.3) 6,680 (67.8)
Past drinkers 395 (8.2) 350 (7.3) 332 (6.9) 173 (1.8) 161 (1.6) 163 (1.7)
Current drinkers 3,431 (71.1) 3,458 (71.6) 3,481 (72.1) 2,936 (29.8) 2,961 (30.0) 3,015 (30.6)

Physical activity
Inactive 1,937 (40.1) 1,960 (40.6) 1,889 (39.1) 0.3211 4,603 (46.7) 4,547 (46.1) 4,609 (46.8) 0.6188
Active 2,889 (59.9) 2,867 (59.4) 2,938 (60.9) 5,254 (53.3) 5,311 (53.9) 5,249 (53.3)
Hypertension 1,102 (22.8) 1,108 (23.0) 1,143 (23.7) 0.5674 1,617 (16.4) 1,610 (16.3) 1,736 (17.6) 0.0263
Diabetes mellitus 508 (10.5) 486 (10.1) 497 (10.3) 0.7604 504 (5.1) 497 (5.0) 486 (4.9) 0.8388
Hyperlipidemia 510 (10.6) 477 (9.9) 506 (10.5) 0.4822 950 (9.6) 1,021 (10.4) 1,036 (10.5) 0.0965

Categorical variables are presented as numbers (%), and continuous variables are presented as the mean ± SD. P-values were determined using analysis of 
variance for continuous variables and the χ2 test for categorical variables.
PRS, polygenic risk score.
1)The PRS distribution was categorized into low, middle, and high tertiles, with mean values as follows: low −0.92 (range −6.51 to −0.37), middle −0.18 (−0.37 to 
0.01), and high 0.29 (0.01 to 1.47) in men; low −0.85 (range −5.11 to −0.34), middle −0.15 (−0.34 to 0.03), and high 0.31 (0.03 to 1.77) in women.



To explore the potential attrition bias, the baseline characteristics of the non-included 
participants were compared with those of the 44,053 included participants (Supplementary 
Tables 1 and 2). The non-included participants group had a smaller proportion of women 
and the mean age was slightly lower than that of the included participants (all P < 0.05). Both 
included and non-included participants had the highest percentage of participants with high 
school education and the highest income level category (all P < 0.05). The proportion of non-
smokers was significantly higher, and the proportion of past drinkers was significantly lower 
in both included and non-included participants compared to other categories of drinkers 
(all P < 0.05). In terms of physical activity, both the included and non-included participants 
had a higher proportion of active participants (P < 0.05). The non-included participants 
group had a slightly higher proportion of participants diagnosed with hypertension and the 
included participants group had a slightly higher proportion of participants diagnosed with 
hyperlipidemia (all P < 0.05). The BMI, systolic and diastolic blood pressure, blood glucose, 
total cholesterol, HDL cholesterol, triglycerides, albumin, and creatinine levels were higher 
in the non-included participants (all P < 0.05). Regarding nutritional intake, total energy, 
protein, fat, and carbohydrate intakes were all slightly higher in the non-included participants 
compared to the included participants (all P < 0.05). The intake of total meat, red and 
processed meat, white meat, fish, shellfish, and vegetables was slightly higher in the non-
included participants, and fruit intake was higher in the included participants (all P < 0.05). 
All the analyses were adjusted for these factors.
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Table 4. Anthropometric, biochemical, and dietary data of Korean adult participants based on the tertiles of the PRS
Variables Men P-value Women P-value

Low-PRS1)  
(n = 4,826)

Mid-PRS1)  
(n = 4,827)

High-PRS1)  
(n = 4,827)

Low-PRS1)  
(n = 9,857)

Mid-PRS1)  
(n = 9,858)

High-PRS1)  
(n = 9,858)

BMI (kg/m2) 24.34 ± 2.68a 24.33 ± 2.63ab 24.20 ± 2.63b 0.0185 23.58 ± 2.91a 23.56 ± 2.83ab 23.48 ± 2.86b 0.0281
Blood pressure

Systolic blood pressure 
(mmHg)

125.18 ± 13.81 125.15 ± 14.03 125.34 ± 14.13 0.7827 120.21 ± 14.63 120.32 ± 14.76 120.70 ± 14.79 0.0511

Diastolic blood pressure 
(mmHg)

78.25 ± 9.30 78.00 ± 9.48 78.18 ± 9.48 0.4221 74.19 ± 9.44 74.21 ± 9.37 74.39 ± 9.39 0.2689

Glucose (mg/dL) 99.18 ± 22.79 98.97 ± 22.62 99.64 ± 23.86 0.3510 92.40 ± 17.20 92.27 ± 17.34 92.21 ± 16.61 0.7381
Total cholesterol (mg/dL) 190.11 ± 34.24 191.29 ± 34.75 191.10 ± 33.64 0.1927 199.49 ± 35.17 198.85 ± 35.12 199.03 ± 35.69 0.4298
HDL cholesterol (mg/dL) 49.56 ± 11.76 49.43 ± 11.91 49.23 ± 11.86 0.3896 56.09 ± 12.92 55.85 ± 12.70 55.67 ± 12.84 0.0678
Triglycerides (mg/dL) 138.79 ± 91.75c 144.11 ± 104.49bc 145.40 ± 99.74ab 0.0024 110.15 ± 68.51b 111.65 ± 72.39ab 112.84 ± 73.59a 0.0303
Albumin (mg/dL) 4.66 ± 0.25 4.67 ± 0.25 4.67 ± 0.26 0.0748 4.58 ± 0.24b 4.58 ± 0.25b 4.59 ± 0.24a 0.0027
Creatinine (mg/dL) 0.95 ± 0.15 0.95 ± 0.14 0.95 ± 0.15 0.0766 0.72 ± 0.12 0.72 ± 0.12 0.72 ± 0.11 0.2735

Nutritional intake
Total calories (kcal/day) 1,848.77 ± 505.74 1,846.99 ± 496.76 1,841.70 ± 506.14 0.7727 1,694.51 ± 511.91 1,689.32 ± 511.28 1,688.53 ± 513.50 0.6723
Protein (g/day) 62.34 ± 23.70 62.48 ± 23.66 61.99 ± 23.57 0.5811 57.37 ± 23.37 57.11 ± 23.14 57.23 ± 22.87 0.7426
Fat (g/day) 30.09 ± 16.64 30.07 ± 16.49 29.57 ± 16.58 0.2119 26.38 ± 15.95 26.25 ± 15.86 26.31 ± 15.58 0.8416
Carbohydrate (g/day) 326.91 ± 83.23 326.39 ± 81.59 326.62 ± 82.62 0.9530 303.34 ± 86.74 302.58 ± 87.02 302.27 ± 87.75 0.6779

Food group intake
Total meat intake (g/day) 44.32 ± 45.53 44.17 ± 43.89 42.74 ± 43.47 0.1530 33.88 ± 41.50 33.63 ± 41.45 33.84 ± 39.06 0.8964
Red and processed meat 
intake (g/day)

40.03 ± 42.36 39.92 ± 41.42 38.65 ± 40.95 0.1906 30.11 ± 38.77 29.87 ± 38.71 30.14 ± 36.49 0.8646

White meat intake (g/day) 4.29 ± 6.82 4.25 ± 6.08 4.09 ± 6.15 0.2751 3.78 ± 6.58 3.76 ± 7.31 3.81 ± 6.05 0.7517
Fish intake (g/day) 28.51 ± 27.45 29.05 ± 28.73 28.74 ± 28.97 0.6369 27.80 ± 29.86 28.25 ± 29.30 28.27 ± 28.88 0.4342
Shellfish intake (g/day) 12.65 ± 15.78 12.98 ± 16.86 12.59 ± 16.74 0.4498 11.99 ± 15.79 11.91 ± 15.17 12.25 ± 17.94 0.3208
Vegetable intake (g/day) 259.06 ± 173.06 260.91 ± 175.98 261.25 ± 176.51 0.8035 245.84 ± 167.67 246.47 ± 168.38 247.63 ± 166.63 0.7484
Fruit intake (g/day) 181.10 ± 179.47 181.53 ± 182.51 179.11 ± 176.05 0.7783 243.09 ± 230.02 238.89 ± 223.34 244.74 ± 229.21 0.1775
Legume intake (g/day) 19.72 ± 19.15 19.78 ± 18.94 19.25 ± 17.30 0.3027 19.80 ± 18.32 19.70 ± 18.89 19.60 ± 18.64 0.7547

Categorical variables are presented as numbers (%), and continuous variables are presented as the mean ± SD. P-values were determined using analysis of 
variance for continuous variables and the χ2 test for categorical variables.
PRS, polygenic risk score; BMI, body mass index; HDL, high-density lipoprotein.
1)The PRS distribution was categorized into low, middle, and high tertiles, with mean values as follows: low -0.92 (range −6.51 to −0.37), middle -0.18 (−0.37 to 0.01), 
and high 0.29 (0.01 to 1.47) in men; low -0.85 (range −5.11 to −0.34), middle -0.15 (−0.34 to 0.03), and high 0.31 (0.03 to 1.77) in women.
a-cDifferent superscript letters indicate significant differences among groups according to Bonferroni’s test at P < 0.05.



SNPs included to calculate the PRS for uric acid levels
Table 5 shows 69 SNPs with a LD value of < 0.01 among the 11,145 SNPs identified in the GWAS.

Hyperuricemia incidence based on red and processed meat intake
The incidence of hyperuricemia according to the consumption of red and processed meat is 
shown in Table 6. In both men and women, there was no statistically significant difference in 
the incidence of hyperuricemia between the red and processed meat consumption tertiles.

Hyperuricemia incidence based on PRS
Table 7 shows the hyperuricemia incidence based on the tertiles of the PRS. In men, the mid- 
and high-PRS groups showed a higher incidence of hyperuricemia. In the multivariable Cox 
proportional hazards model, men with mid- and high-PRS exhibited a 1.53- and 2.46-fold 
higher incidence of hyperuricemia, respectively, when adjusted for confounders, compared 
with men with low PRS (HR, 1.53; 95% CI, 1.32–1.78 and HR, 2.46; 95% CI, 2.14–2.82, 
respectively). Similarly, women with mid- and high-PRS exhibited a higher incidence of 
hyperuricemia. Furthermore, the incidence of hyperuricemia in the adjusted model was 1.79- 
and 3.24-fold higher in women with mid- and high-PRS when compared with women with 
low-PRS (HR, 1.79; 95% CI, 1.50–2.14 and HR, 3.24; 95% CI, 2.75–3.81, respectively).
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Table 5. Genetic characteristics of the 69 SNPs causally associated with uric acid levels among Korean adults
Chromosome SNP Gene Position Effected alleles Other alleles MA MAF β SE Lower 95% CI Upper 95% CI
1 rs2282013 LIX1L 145477257 C T C 0.243 0.0506 0.007225 0.03644 0.06476
1 rs1656443894 None 145724599 C CAT C 0.1288 −0.0953 0.009217 −0.1133 −0.07722
1 rs2990223 GBAP1 155184975 A A A 0.1311 0.0553 0.009214 0.03724 0.07336
2 rs1260326 GCKR 27730940 C T C 0.4499 −0.0658 0.006244 −0.07803 −0.05356
2 rs1197369934 LRP2 170204098 GA G GA 0.2125 0.0540 0.007542 0.03917 0.06873
3 rs2239547 ITIH4 52855229 C T C 0.3645 −0.0449 0.006435 −0.05746 −0.03224
3 rs57791671 None 121608433 T T T 0.2459 −0.0440 0.007193 −0.05805 −0.02985
4 rs144094931 None 8792685 T T T 0.479 −0.0418 0.006183 −0.05395 −0.02972
4 rs16889842 SLC2A9 9872013 A G A 0.05708 −0.1043 0.01328 −0.1303 −0.07826
4 rs560612843 SLC2A9 9876764 C T C 0.03889 0.1307 0.01598 0.0994 0.162
4 rs6855911 SLC2A9 9935910 G A G 0.01104 −0.3880 0.02969 −0.4462 −0.3298
4 rs116882299 SLC2A9 9954549 C T C 0.01313 0.1701 0.02709 0.117 0.2232
4 rs3775948 SLC2A9 9995182 G G G 0.4191 −0.2301 0.006219 −0.2423 −0.2179
4 rs146908106 WDR1 10083157 T G T 0.01398 0.1727 0.02623 0.1213 0.2241
4 rs117309606 WDR1 10119652 G A G 0.06223 0.1822 0.01281 0.1571 0.2073
4 rs117202670 CLNK 10559679 A T A 0.01166 0.1712 0.02901 0.1144 0.2281
4 rs1467807501 CLNK 10600873 CA C CA 0.1017 −0.0587 0.01023 −0.07871 −0.03862
4 rs45499402 ABCG2 89043634 C G C 0.2721 0.1624 0.00693 0.1488 0.176
4 rs72552713 ABCG2 89052957 A G A 0.01559 0.2370 0.02496 0.1881 0.2859
4 rs2622629 ABCG2 89094064 T T T 0.3892 −0.0605 0.006358 −0.07296 −0.04804
5 rs17632159 LOC105379030 72431482 C G C 0.2794 −0.0380 0.0069 −0.05156 −0.02451
6 rs145778008 CARMIL7 25554747 T G T 0.01661 0.1515 0.02413 0.1042 0.1988
6 rs1165196 SLC17A1 25813150 G G G 0.143 −0.0990 0.008868 −0.1163 −0.08157
6 rs1761249237 LINC00240 26963808 GT G GT 0.0241 0.1237 0.02018 0.08416 0.1633
6 rs189743278 None 27821207 A T A 0.02226 −0.1591 0.02105 −0.2004 −0.1179
6 rs146980245 None 28988470 T C T 0.02348 −0.1484 0.02047 −0.1885 −0.1083
6 rs117952863 None 29190194 G A G 0.0564 0.0753 0.01343 0.04893 0.1016
6 rs118020682 ZNRD1ASP 30019001 T C T 0.02744 −0.1383 0.01891 −0.1753 −0.1012
6 rs116281378 TRIM39 30295707 C T C 0.05015 0.0806 0.01416 0.05282 0.1083
6 rs1265091 None 31108129 T C T 0.09885 −0.0758 0.01035 −0.09605 −0.05547
6 rs2523464 MICA-AS1 31363489 A G A 0.0932 0.0796 0.01063 0.05876 0.1004
6 rs189443726 None 32510828 A G A 0.04274 −0.0997 0.01523 −0.1295 −0.06981
6 rs13199339 None 33022344 C A C 0.0449 0.0980 0.0149 0.06882 0.1272
6 rs10223666 POLR1C 43805502 G G G 0.1428 −0.0714 0.008847 −0.08875 −0.05407

(continued to the next page)



732https://doi.org/10.4162/nrp.2024.18.5.721

Meat intake, genetic risk, and hyperuricemia in middle-aged Koreans

https://e-nrp.org

Table 6. Incidence of hyperuricemia in Korean adults based on red and processed meat intake determined by the multivariable Cox proportional hazards model
Red and processed meat intake (g/day) Median (g/day) Person-years Cases/Total Hyperuricemia

HR (95% CI) P-value
Men

Tertile 1 (0 to 18.17) 10.00 2,050 435/4,828 1.00 (Ref)
Tertile 2 (18.17 to 40.48) 28.00 2,174 469/4,836 1.04 (0.91–1.19) 0.5834
Tertile 3 (40.48 to 759.29) 68.11 2,305 496/4,816 1.14 (0.97–1.34) 0.1043

Women
Tertile 1 (0 to 12.38) 5.00 1,934 410/10,130 1.00 (Ref)
Tertile 2 (12.50 to 30.83) 18.75 1,816 396/10,048 1.06 (0.92–1.23) 0.4540
Tertile 3 (30.90 to 1,040.00) 49.64 1,603 350/9,785 1.03 (0.86–1.22) 0.7789

Adjusted for age, education, income, alcohol consumption, regular exercise, BMI, smoking, total energy, protein intake, white meat intake, fish intake, shellfish 
intake, fruit intake, vegetable intake, legume intake, hypertension, diabetes mellitus, and hyperlipidemia.
HR, hazard ratio; CI, confidence interval; BMI, body mass index.

Chromosome SNP Gene Position Effected alleles Other alleles MA MAF β SE Lower 95% CI Upper 95% CI
6 rs4715517 HCRTR2 54973761 A C A 0.05355 0.1182 0.01376 0.09125 0.1452
7 rs10277115 None 1285195 T A T 0.3616 0.0430 0.006448 0.03033 0.05561
7 rs35348663 TBL2 72991593 C G C 0.1092 −0.0571 0.009865 −0.07643 −0.03776
8 rs2941461 HNF4G 76447309 T A T 0.4171 0.0497 0.006302 0.03732 0.06203
10 rs28621957 A1CF 52596555 C T C 0.04392 0.0831 0.01502 0.05369 0.1126
10 rs4141671 BICC1 60338753 C T C 0.4899 −0.0475 0.006169 −0.05954 −0.03536
10 rs659107 None 88953614 G T G 0.3608 0.0496 0.006448 0.03694 0.06222
10 rs1589579109 None 119449464 C C C 0.3738 0.0432 0.006416 0.03064 0.05579
11 rs963837 None 30749090 C T C 0.3898 −0.0516 0.006327 −0.064 −0.0392
11 rs11231202 None 62523584 G A G 0.3465 −0.0370 0.006524 −0.04982 −0.02425
11 rs150467670 SLC22A10 63077912 C T C 0.01438 −0.6061 0.02583 −0.6567 −0.5555
11 rs200045361 None 63382900 G G G 0.3809 0.0404 0.006407 0.02787 0.05299
11 rs67136175 MACROD1 63777793 G T G 0.04768 0.0806 0.01453 0.05216 0.1091
11 rs10897472 MACROD1 63809309 C T C 0.429 0.0499 0.006266 0.03763 0.06219
11 rs12276104 None 64154339 T C T 0.2856 −0.0808 0.006865 −0.0943 −0.06739
11 rs145954970 None 64273830 G C G 0.02205 −1.0630 0.02057 −1.103 −1.022
11 rs143866387 None 64353124 A G A 0.0369 0.1797 0.01638 0.1476 0.2118
11 rs75786299 SLC22A12 64361042 A G A 0.01151 0.6214 0.02904 0.5645 0.6783
11 rs7937996 None 64751223 G T G 0.4987 0.0832 0.006163 0.07111 0.09527
11 rs181715294 None 65237655 T C T 0.0136 −0.1987 0.02678 −0.2511 −0.1462
11 rs1228875474 None 65288700 G C G 0.01314 −0.9226 0.02688 −0.9752 −0.8699
11 rs7940691 None 65640906 T C T 0.4281 0.0681 0.00626 0.05582 0.08036
11 rs7128076 None 65759634 C T C 0.2812 0.0450 0.006874 0.03154 0.05848
11 rs77821550 PACS1 65904493 G GC G 0.3179 0.0394 0.00666 0.02639 0.0525
11 rs537396581 C11orf80 66543391 C T C 0.01679 −0.6676 0.02386 −0.7143 −0.6208
11 rs116892937 ENPP7P7 67589932 T C T 0.02506 −0.3024 0.01977 −0.3412 −0.2637
11 rs146832566 CPT1A 68606681 T C T 0.03558 −0.1558 0.0167 −0.1885 −0.123
12 rs2244608 HNF1A 121416988 G A G 0.4945 −0.0430 0.006197 −0.05519 −0.0309
15 rs28607641 UBE2Q2 76191644 T A T 0.4466 0.0402 0.006214 0.028 0.05236
15 rs6598541 IGF1R 99271135 A A A 0.4658 0.0632 0.006201 0.05106 0.07537
16 rs4334315 MAFTRR 79756197 T A T 0.2803 −0.0479 0.006887 −0.06137 −0.03437
16 rs4077450 None 79931595 G G G 0.3951 0.0365 0.006352 0.02403 0.04893
17 rs4617927 HLF 53356126 G G G 0.4195 −0.0346 0.00629 −0.04689 −0.02224
17 rs7217891 BCAS3 59447984 G G G 0.4369 −0.0615 0.006253 −0.07374 −0.04923
19 rs2240751 MFSD12 3548231 G A G 0.3389 −0.0471 0.006517 −0.05985 −0.0343
SNP, single-nucleotide polymorphism; MA, minor allele; MAF, minor allele frequency; LIX1L, limb and CNS expressed 1 like; GBAP1, glucosylceramidase beta 1; 
GCKR, glucokinase regulator; LRP2, LDL receptor related protein 2; ITIH4, inter-alpha-trypsin inhibitor heavy chain 4; SLC2A9, solute carrier family 2 member 9; 
WDR1, WD repeat domain 1; CLNK, cytokine dependent hematopoietic cell linker; ABCG2, ATP binding cassette subfamily G member 2; CARMIL, capping protein 
regulator and myosin 1 linker; SLC17A1, solute carrier family 17 member 1; LINC00240, long intergenic non-protein coding RNA 240; ZNRD1ASP, POLR1H antisense, 
pseudogene; TRIM39, tripartite motif containing 39; MICA-AS1, MICA antisense RNA 1; POLR1C, RNA Polymerase I And III Subunit C; HCRTR2, hypocretin receptor 
2; TBL2, transducin (beta)-like 2; HNF4G, hepatocyte nuclear factor 4 gamma; A1CF, APOBEC1 complementation factor; BICC1, BicC family RNA binding protein 
1; SLC22A10, solute carrier family 22 member 10; MACROD1, mono-ADP Ribosylhydrolase 1; SLC22A12, solute carrier family 22 member 12; PACS1, phosphofurin 
acidic cluster sorting protein 1; C11orf80, chromosome 11 open reading frame 80; ENPP7P7, ectonucleotide pyrophosphatase/phosphodiesterase 7 pseudogene 
7; CPT1A, carnitine palmitoyltransferase 1A; HNF1A, hepatocyte nuclear factor 1 alpha; UBE2Q2, ubiquitin conjugating enzyme E2 Q2; IGF1R, insulin-like growth 
factor-1 receptor; MAFTRR, MAF transcriptional regulator RNA; HLF, hepatic leukemia factor; BCAS3, breast carcinoma-amplified sequence 3; MFSD12, major 
facilitator superfamily domain containing 12.

Table 5. (Continued) Genetic characteristics of the 69 SNPs causally associated with uric acid levels among Korean adults



Hyperuricemia incidence based on combinations of red and processed meat 
consumption and PRS
Table 8 shows the relationship between the combination of red and processed meat intake, 
PRS, and the incidence of hyperuricemia. In both men and women, the incidence of 
hyperuricemia varied depending on the combination of red and processed meat intake and 
PRS. In particular, the higher the PRS, the higher the incidence of hyperuricemia, even within 
the same red and processed meat intake tertiles.

For men, compared with the low-PRS group and tertile 1 of red and processed meat intake, 
the groups with mid- and high-PRS and in the tertile 1 of red and processed meat intake 
exhibited a 1.44- and 2.24-fold increase in the incidence of hyperuricemia, respectively (HR, 
1.44; 95% CI, 1.11–1.88; HR, 2.24; 95% CI, 1.76–2.87, respectively, P for trend < 0.0001). 
Furthermore, men with mid- and high-PRS and in the tertile 2 of red and processed meat 
intake had a 1.60- and 2.40-fold higher risk of hyperuricemia, respectively, than those with a 
low-PRS and in tertile 1 of red and processed meat intake (HR, 1.60; 95% CI, 1.23–2.08; HR, 
2.40; 95% CI, 1.89–3.06, respectively, P for trend < 0.0001). The same trend was observed 
among those who consumed the most red and processed meat. Men in the tertile 3 of red and 
processed meat intake and with mid- and high-PRS had a linearly increased risk of 1.55- and 
2.72-fold, respectively, compared to those with a low-PRS and in tertile 1 of red and processed 
meat intake (HR, 1.55; 95% CI, 1.18–2.04; HR, 2.72; 95% CI, 2.10–3.53, respectively, P for 
trend < 0.0001). However, no interaction was observed between red and processed meat 
intake and PRS in the development of hyperuricemia in men.

For women, compared with the low-PRS group and tertile 1 of red and processed meat 
intake, the groups with mid- and high-PRS and in the tertile 1 of red and processed meat 
intake exhibited a 1.80- and 3.24-fold increase in hyperuricemia incidence, respectively (HR, 
1.80; 95% CI, 1.34–2.41; HR, 3.24; 95% CI, 2.47–4.26, respectively, P for trend < 0.0001). 
Furthermore, women with mid- and high-PRS and in tertile 2 of red and processed meat 
intake had a 1.98- and 3.40-fold higher risk of hyperuricemia than those with a low-PRS and 
tertile 1 of red and processed meat intake (HR, 1.98; 95% CI, 1.47–2.66; HR, 3.40; 95% CI, 
2.58–4.48, respectively, P for trend < 0.0001). The same trend was observed among those 
who consumed the most red and processed meat. Women in the tertile 3 of red and processed 
meat intake and with mid- and high-PRS had a linearly increased risk of 1.72- and 3.28-fold, 
respectively, compared to those with a low-PRS and in tertile 1 of red and processed meat 
intake (HR, 1.72; 95% CI, 1.24–2.37; HR, 3.28; 95% CI, 2.45–4.40, respectively, P for trend < 
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Table 7. Incidence of hyperuricemia in Korean adults based on the tertiles of PRS determined by the multivariable 
Cox proportional hazards model
PRS Cases/Total Hyperuricemia

HR (95% CI) P-value
Men

Low-PRS (−6.51 to −0.37) 288/4,826 1.00 (Ref)
Mid-PRS (−0.37 to 0.01) 436/4,827 1.53 (1.32–1.78) < 0.0001
High-PRS (0.01 to 1.47) 676/4,827 2.46 (2.14–2.82) < 0.0001

Women
Low-PRS (−5.11 to −0.34) 191/9,857 1.00 (Ref)
Mid-PRS (−0.34 to 0.03) 351/9,858 1.79 (1.50–2.14) < 0.0001
High-PRS (0.03 to 1.77) 614/9,858 3.24 (2.75–3.81) < 0.0001

Adjusted for age, education, income, alcohol consumption, regular exercise, BMI, smoking, total energy, protein 
intake, white meat intake, fish intake, shellfish intake, fruit intake, vegetable intake, legume intake, hypertension, 
diabetes mellitus, and hyperlipidemia.
PRS, polygenic risk score; HR, hazard ratio; CI, confidence interval; BMI, body mass index.
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0.0001). However, even in women, there was no interaction between red and processed meat 
consumption and the PRS in the development of hyperuricemia.

We further investigated how the combination of the PRS and total meat intake, including red, 
processed, and white meat, affected hyperuricemia incidence (Supplementary Tables 3 and 4). 
Men who consumed the highest amount of total meat had a significantly higher incidence 
of hyperuricemia than those who consumed the lowest amount of total meat (P < 0.05). 
However, the combination of total meat and PRS showed a trend similar to that of the 
combination of red and processed meat consumption and PRS for both men and women.

DISCUSSION

This study explored the effects of different combinations of individual polygenic influences 
and red and processed meat consumption on hyperuricemia in middle-aged Korean adults. 
In this study, the link between the PRS and the consumption of red and processed meat in 
the association with hyperuricemia development was verified using data from the KoGES 
HEXA. In both men and women, the PRS was positively correlated with the development 
of hyperuricemia, and the incidence of hyperuricemia increased with an increasing PRS, 
even within the same red and processed meat intake tertiles. Men and women with a high 
PRS and high red and processed meat intake had 2.72- and 3.28-times higher incidences of 
hyperuricemia, respectively, than those with a low PRS and low red and processed meat intake.

Uric acid metabolism is a complex process that includes a variety of factors that control its 
production by the liver, as well as its excretion by the kidneys and intestines. Uric acid is the 
final product of exogenous and endogenous purine metabolism, which substantially varies 
depending on the diet. Animal proteins have a noticeable effect on the purine pool [60]. 
Increased reabsorption or decreased secretion of uric acid in the proximal tubules decreases 
the rate of uric acid excretion. Multiple proteins involved in uric acid transport play an 
important role in the treatment of hyperuricemia [61].

Hyperuricemia is thought to be caused by a combination of environmental and genetic factors 
[62]. We identified 69 SNPs in uric acid-related loci using GWAS and clumping analysis, 
of which the most prominent were SLC2A9, ABCG2, WD repeat domain 1 (WDR1), cytokine 
dependent hematopoietic cell linker (CLNK), and mono-ADP Ribosylhydrolase 1 (MACROD1). 
The influence of genes on the development of complex diseases such as hyperuricemia 
is widely known. Among the genetic variants associated with uric acid levels selected for 
our study, the SLC2A9 expression was the most prominent and has been associated with 
hyperuricemia and gout. SLC2A9, previously discovered as a glucose transporter, was later 
identified as a major uric acid transporter and this function has been revealed in human 
genetic studies [63,64]. In a previous GWAS, SLC2A9 emerged as the main gene associated 
with uric acid levels in human cohorts, and the minor allele of SLC2A9 reduced uric acid levels 
by 0.30–0.35 mg/dL on average [65]. Previous studies examining the molecular mechanisms 
of renal uric acid transport in humans and rodents have shown that SLC2A9 contributes 
significantly to urate uptake in the proximal tubule [66]. Other GWAS and candidate gene 
association studies have also discovered a powerful relationship between SLC2A9 SNPs and 
serum uric acid levels [65,67-71]. Among the SLC2A9 SNPs in our study, rs_6855911 and 
rs_3775948 have been previously shown to be associated with hyperuricemia and uric acid 
levels [72-76]. ABCG2 has also been associated with hyperuricemia in many studies [67,77-79].  
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ABCG2, a multifunctional heterotrimeric endogenous transporter protein, is primarily 
expressed in the kidney, liver, and gastrointestinal tract and plays a substantial role in 
removing uric acid from the circulation [77]. Variations in ABCG2 may cause the destabilization 
of its nucleotide-binding structural domain, which may result in reduced expression and 
dysfunction, leading to inadequate renal urate excretion [78]. Several GWASs have reported 
the major influence of ABCG2 on hyperuricemia and gout. rs_45499402 and rs_72552713 in 
ABCG2 notably increased the risk of gout in Asians [79,80], and these SNPs were also identified 
in our study. Additionally, many genes, including glucosylceramidase beta 1 (GBAP1) [81], 
glucokinase regulator (GCKR) [26,82-86], low-density lipoprotein receptor related protein 2 
(LRP2) [27,30,87-90], WDR1 [91-93], CLNK [94,95], solute carrier family 17 member 1 (SLC17A1) 
[96-99], hypocretin receptor 2 (HCRTR2) [77,100], hepatocyte nuclear factor 4 gamma (HNF4G) 
[77,101-103], APOBEC1 complementation factor (A1CF) [26,104], BicC family RNA binding 
protein 1 (BICC1) [105], solute carrier 22 family member 10 (SLC22A10) [106,107], solute carrier 
family 22 member 12 (SLC22A12) [23,77,108,109], phosphofurin acidic cluster sorting protein 
1 (PACS1) [110], carnitine palmitoyltransferase 1A (CPT1A) [111,112], hepatocyte nuclear factor 
1 alpha (HNF1A) [113], ubiquitin conjugating enzyme E2 Q2 (UBE2Q2) [114,115], insulin-like 
growth factor-1 receptor (IGF1R) [100,116], MAF transcriptional regulator RNA (MAFTRR) 
[77,100,117], hepatic leukemia factor (HLF) [118,119], breast carcinoma-amplified sequence 
3 (BCAS3) [120,121], and major facilitator superfamily domain containing 12 (MFSD12) [100], 
identified in our study, have previously been reported to contribute to the regulation of uric 
acid levels and have been related to gout or hyperuricemia in several populations. To the 
best of our knowledge, the association of limb and CNS expressed 1 like (LIX1L), inter-alpha-
trypsin inhibitor heavy chain 4 (ITIH4), LOC105379030, capping protein regulator and myosin 
1 linker 7 (CARMIL7), long intergenic non-protein coding RNA 240 (LINC00240), POLR1H 
antisense, pseudogene (ZNRD1ASP), tripartite motif containing 39 (TRIM39), MICA antisense 
RNA 1 (MICA-AS1), RNA Polymerase I And III Subunit C (POLR1C), transducin (beta)-like 2 
(TBL2), chromosome 11 open reading frame 80 (C11orf80), ectonucleotide pyrophosphatase/
phosphodiesterase 7 pseudogene 7 (ENPP7P7), and MACROD1 with uric acid levels has been 
identified for the first time in this study.

This study calculated the weighted PRS from the uric acid level-related SNPs selected by 
GWAS and clumping analysis. Individuals in the high-PRS group had a roughly two- to 
three-fold elevated risk of hyperuricemia compared to those in the low-PRS group. Recently, 
PRS, which aggregates multiple risk alleles, has been used to quantitatively measure 
genetic susceptibility to several polygenic diseases, including dementia, CVD, diabetes, 
breast cancer, and colorectal cancer [122-127]. Similar to our study, a recent study on 
hyperuricemia and PRS showed that a lower PRS was associated with a significantly lower 
risk of hyperuricemia, with participants at low genetic risk having a 0.60-fold reduced risk 
of hyperuricemia compared with those at high genetic risk [128]. Our findings showed that 
women in the high PRS group had a higher risk of hyperuricemia than men. This may be due 
to differences in the estrogen levels between the sexes, as the BCAS3 gene included in PRS can 
activate estrogen receptor alpha [121]. Postmenopausal women may have increased uric acid 
levels owing to decreases in estradiol levels, as estrogen stimulates the kidneys to remove 
urate [129]. However, because our dataset did not include information on the hormonal 
changes in the participants, further research is needed to resolve and minimize this potential 
bias that may contribute to the observed differences between women and men.

Previous studies have demonstrated a link between the intake of red and processed meat 
and the risk of hyperuricemia. As mentioned earlier, in the results of NHANES III which 
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evaluated the association between dietary factors and serum uric acid levels in American 
adults, the uric acid levels were observed to increase concomitantly with increased total meat 
intake in both men and women [18]. In a cross-sectional study of older Chinese women, 
meat intake was related to an increased prevalence of hyperuricemia [130]. In a meta-analysis 
of observational studies, the risk of hyperuricemia was positively associated with red meat 
intake [131]. Individuals with dietary patterns involving the consumption of large amounts 
of processed meat are at a higher risk of increased serum uric acid [132-134], and higher 
scores for diets high in animal organs and processed meat are related to a higher prevalence 
of newly diagnosed hyperuricemia [135]. Although this study did not show a connection 
between hyperuricemia and the intake of red and processed meat, there were differences in 
the effects of different combinations of red and processed meat consumption and PRS on 
hyperuricemia development. Although there was no clear interaction between PRS and red 
and processed meat intake in the incidence of hyperuricemia in our study, a higher incidence 
of hyperuricemia was found when red and processed meat intakes were combined with high 
PRS than when PRS was applied alone as an independent variable. Moreover, our results 
showed that the risk of developing hyperuricemia significantly increased with increasing 
PRS, even when the intake of red and processed meat was the same. This suggests that red 
and processed meat intake should be modified according to an individual’s PRS to prevent 
the development of hyperuricemia and may serve as a basis for a tailored dietary control 
approach for the prevention of the disease. Genetic variation does not occur due to a single 
genetic variant, but rather due to the accumulation of risk alleles from multiple loci that 
exert their effect on the relevant trait. Recent studies have identified a link between genetic 
risk, lifestyle, dietary patterns, and uric acid levels. In a population-based cohort study, 
an individuals’ low genetic risk and adherence to a healthy lifestyle significantly reduced 
their risk of hyperuricemia [128]. In a cohort study of women, a strong connection between 
diet and gout risk was observed in women with a higher genetic risk [136]. Data on the 
effectiveness of specific diets in the management of hyperuricemia and gout are limited. 
Future studies examining the role of gene-diet interactions and patient counseling on the 
role of a healthy diet in optimally controlling hyperuricemia, gout, and other comorbidities 
should also be conducted [137].

This study yielded meaningful results and had several strengths. First, this was the first 
study to confirm the relationship between the PRS and consumption of red and processed 
meat and hyperuricemia in the Korean population. Second, as we adjusted for multiple 
confounding variables in the analysis, we identified an independent association of the PRS 
and the intake of red and processed meat with hyperuricemia. Despite these strengths, this 
study had several limitations. First, as this was a prospective cohort study, it was not possible 
to investigate the mechanisms by which the relationship between red and processed meat 
intake and PRS affects hyperuricemia. Second, as we only used baseline dietary survey data, 
the diet may have changed during the follow-up period. Third, because this study targeted 
middle-aged Koreans, the generalizability of the findings to other age groups or races/
ethnicities may be limited.

This prospective cohort study in Korean adults showed no clear interaction between red and 
processed meats in the development of hyperuricemia. However, the risk of hyperuricemia 
was linearly amplified in individuals with a high genetic risk of high uric acid levels despite 
the consumption of the same amounts of red and processed meat as those with a low genetic 
risk. In particular, the risk of hyperuricemia is higher when genetic risk is combined with 
a high intake of red and processed meats than genetic risk alone. Our results illustrate 
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the important synergy between the combination of genetic predisposition and specific 
dietary factors, suggesting that controlling red and processed meat intake is important for 
preventing hyperuricemia, especially in individuals with a higher genetic risk.
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