DOI QR코드

DOI QR Code

Numerical investigation on hydrodynamic response of a SPAR platform for offshore wind energy

  • Arya Thomas (Department of Civil Engineering, Indian Institute of Technology Bombay) ;
  • V.K. Srineash (Department of Civil Engineering, Indian Institute of Technology Bombay) ;
  • Manasa Ranjan Behera (Department of Civil Engineering, Indian Institute of Technology Bombay)
  • Received : 2024.07.02
  • Accepted : 2024.09.10
  • Published : 2024.09.25

Abstract

Th COP28 has emphasized the governments to speed up the transition away from fossil fuels to renewables such as wind and solar power in their next round of climate commitments. The steady and less turbulent wind over the ocean draws increased attention of governments, industries and researchers on exploring advanced technologies to extract energy from offshore wind. The present study numerically investigates the hydrodynamic behavior of a SPAR-type Floating Offshore Wind Turbine (FOWT) under various wave conditions and mooring line configurations. One of the major focuses of this study is investigating a freak wave's impact on a FOWT and determining its extreme responses. The study investigates the structural response under various wave impact for different configurations of mooring lines. The present study examines the wave-structure interaction under regular and freak wave conditions using numerical modelling approach. During the study, it is ensured that the natural frequency and wave induced motions of SPAR are inline with the experimental studies; thereby increasing the confidence in using the numerical model and domain for this investigation. The study considers the behaviour of slack and taut mooring arrangements under these wave conditions. The study observed that a taut mooring configuration can be efficient in restraining the FOWT motions, especially under a freak wave scenario. The Froude-Krylov force shows a non-linearity due to the non-uniform profile of the platform under all wave conditions. Overall, the study contributes to determining the performance of the mooring configurations under different wave conditions.

Keywords

Acknowledgement

Authors would like to thank and acknowledge the funding received from NIOT, MoES, Government of India through Project No. NIOT/F&A/DOM-V5-01. Also, we are grateful to Prof. Sverre Haver (University of Stavanger) for sharing the Draupner wave time series.

References

  1. Agarwal, A.K. and Jain, A.K. (2003), "Dynamic behavior of offshore spar platforms under regular sea waves", Ocean Eng., 30(4), 487-516. https://doi.org/10.1016/S0029-8018(02)00034-3.
  2. ANSYS, A.Q.W.A. (2018), Aqwa Theory Manual. ANSYS, Inc., Canonsburg, PA, USA.
  3. Aggarwal, N., Manikandan, R. and Saha, N. (2017), "Nonlinear short term extreme response of spar type floating offshore wind turbines", Ocean Eng., 130, 199-209. https://doi.org/10.1016/j.oceaneng.2016.11.062.
  4. Arya, T., Srineash, V.K. and Behera, M.R. (2023a), "Modeling of SPAR platform using soft mooring system", Proceedings of the ICSOS International Conference on Ships and Offshore Structures, Yantai, China, September (presented).
  5. Atcheson, M., Garrad, A., Cradden, L., Henderson, A., Matha, D., Nichols, J., Roddier, D. and Sandberg, J. (2016), Floating Offshore Wind Energy, Springer International Publishing, New York, USA. https://doi.org/10.1007/978-3-319-29398-1.
  6. Azcona, J. and Vittori, F. (2019), "Mooring system design for the 10 MW triple spar floating wind turbine at a 180 m sea depth location", J. Physics: Conference Series, 1356(1), 012003. https://doi.org/10.1088/1742-6596/1356/1/012003.
  7. Bach-Gansmo, M.T., Garvik, S.K., Thomsen, J.B. and Andersen, M.T. (2020), "Parametric study of a taut compliant mooring system for a FOWT compared to a catenary mooring", J. Mar. Sci. Eng., 8(6), 431. https://doi.org/10.3390/jmse8060431.
  8. Barrera, C., Guanche, R. and Losada, I.J. (2019), "Experimental modelling of mooring systems for floating marine energy concepts", Mar. Struct., 63,153-180. https://doi.org/10.1016/j.marstruc.2018.08.003.
  9. Borlet, R. M. (2016), "Design and optimization of mooring systems for floating wind turbines", Master's thesis, NTNU, Norway.
  10. Brito, M., Ferreira, R.M.L., Teixeira, L. Neves, M.G. and Canelas, R.B. (2020), "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves", Renew. Energ., 151, 975-992. https://doi.org/10.1016/j.renene.2019.11.094.
  11. Bruun, P. (1994), "Freak waves in the ocean and along shores, including impacts on fixed and floating structures", J. Coast. Res., 163-175. https://www.jstor.org/stable/25735596.
  12. Chakrabarti, S.K. (1987), Hydrodynamics of offshore structures, WIT press, Ashurst, UK. 
  13. Collu, M. and Borg, M. (2016), Design of floating offshore wind turbines, In Offshore wind farms, 359-385. https://doi.org/10.1016/B978-0-08-100779-2.00011-8.
  14. Det, N. (2013), "DNV offshore standard DNV-OS-J101, design of offshore wind turbine", Technical Standard, 134-135, Norway.
  15. Edwards, E.C., Holcombe, A., Brown, S., Ransley, E., Hann, M. and Greaves, D. (2023), "Evolution of floating offshore wind platforms: A review of at-sea devices", Renew. Sust. Energ. Rev., 183, 113416. https://doi.org/10.1016/j.rser.2023.113416.
  16. Esteban, M.D., Diez, J.J., Lopez, J.S. and Negro, V. (2011), "Why offshore wind energy?", Renew. Energ., 36(2), 444-450. https://doi.org/10.1016/j.renene.2010.07.009.
  17. Ghafari, H.R., Ketabdari, M.J., Ghassemi, H. and Homayoun, E. (2019), "Numerical study on the hydrodynamic interaction between two floating platforms in Caspian Sea environmental conditions", Ocean Eng., 188, 106273. https://doi.org/10.1016/j.oceaneng.2019.106273.
  18. Ghigo, A., Niosi, F., Paduano, B., Bracco, G. and Mattiazzo, G. (2022), "Mooring system design and analysis for a floating offshore wind turbine in Pantelleria", In Turbo Expo: Power for Land, Sea, and Air, 86137, V011T38A021. American Society of Mechanical Engineers, June. https://doi.org/10.1115/GT2022-83219.
  19. Hayer, S. and Andersen, O.J. (2000), "Freak waves: Rare realizations of a typical population or typical realizations of a rare population?", Proceedings of the ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I), Seattle, Washington, USA, May.
  20. Hegde, P. and Nallayarasu, S. (2023), "Hydrodynamic response of buoy form spar with heave plate near the free surface validated with experiments", Ocean Eng., 269, 113580. https://doi.org/10.1016/j.oceaneng.2022.113580.
  21. Jang, H. and Kim, M. (2020), "Effects of nonlinear FK (Froude-Krylov) and hydrostatic restoring forces on arctic-spar motions in waves", Int. J. Naval Architect. Ocean Eng., 12, 297-313. https://doi.org/10.1016/j.ijnaoe.2020.01.002.
  22. Jonkman, J. (2010), Definition of the Floating System for Phase IV of OC3, (No. NREL/TP-500-47535). National Renewable Energy Lab. (NREL), Golden, CO (United States), May.
  23. Kim, H.J., Lee, K.S. and Jang, B.S. (2018), "A linearization coefficient for Morison force considering the intermittent effect due to free surface fluctuation", Ocean Eng., 159, 139-149. https://doi.org/10.1016/j.oceaneng.2018.04.025.
  24. Kim, S.J., Koo, W. and Kim, M.H. (2021), "The effects of geometrical buoy shape with nonlinear Froude-Krylov force on a heaving buoy point absorber", Int. J. Naval Architect. Ocean Eng., 13, 86-101. https://doi.org/10.1016/j.ijnaoe.2021.01.008.
  25. Kota, R.S., Greiner, W. and D'Souza, R.B. (1999), "Comparative assessment of steel and polyester moorings in ultradeep water for spar-and semi-based production platforms", Proceedings of the Offshore Technology Conference, OTC, May. https://doi.org/10.4043/10909-MS.
  26. Le Mehaute, B. (1976), An introduction to hydrodynamics and water waves, Springer Science & Business Media, Germany.
  27. Li, Y., Qu, X., Liu, L., Xie, P., Yin, T. and Tang, Y. (2020), "A numerical prediction on the transient response of a spar-type floating offshore wind turbine in freak waves", J. Offshore Mech. Arct., 142(6), 062004. https://doi.org/10.1115/1.4047202.
  28. Li, Y., Li, H., Wang, Z., Li, Y., Wang, B. and Tang, Y. (2023), "The dynamic response of a Spar-type floating wind turbine under freak waves with different properties", Mar. Struct., 91, 103471. https://doi.org/10.1016/j.marstruc.2023.103471.
  29. Li, H., Li, Y., Li, G., Zhu, Q., Wang, B. and Tang, Y. (2024), "Transient tower and blade deformations of a Spar-type floating wind turbine in freak waves", Ocean Eng., 294, 116801. https://doi.org/10.1016/j.oceaneng.2024.116801.
  30. Luo, M., Koh, C.G., Lee, W.X., Lin, P. and Reeve, D.E. (2020), "Experimental study of freak wave impacts on a tension-leg platform", Mar. Struct., 74, 102821. https://doi.org/10.1016/j.marstruc.2020.102821.
  31. Morton, A., Greenfield, P., Harvey, F., Lakhani, N. and Carrington, D. (2023), "Cop28 landmark deal agreed to 'transition away'from fossil fuels", The Guardian, https://www.theguardian.com/environment/2023/dec/13/cop28-landmark-deal-agreed-to-transition-away-from-fossil-fuels.
  32. Nallayarasu, S. and Saravanapriya, S. (2013), "Experimental and numerical investigation on hydrodynamic response of spar with wind turbine under regular waves", Int. J. Ocean Climate Syst., 4(4), 239-260. https://doi.org/10.1260/1759-3131.4.4.239.
  33. Nallayarasu, S. and Kumar, N.S. (2017), "Experimental and numerical investigation on hydrodynamic response of buoy form spar under regular waves", Ships Offshore Struct., 12(1), 19-31. https://doi.org/10.1080/17445302.2015.1099227.
  34. Proskovics, R. (2015), "Dynamic response of spar-type offshore floating wind turbines", Ph.D. Dissertation, University of Strathclyde, UK.
  35. Qu, X., Li, Y., Tang, Y., Hu, Z., Zhang, P. and Yin, T. (2020), "Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect", Appl. Ocean Res., 100, 102178. https://doi.org/10.1016/j.apor.2020.102178.
  36. Ramachandran, G.K.V., Robertson, A., Jonkman, J.M. and Masciola, M.D. (2013), "Investigation of response amplitude operators for floating offshore wind turbines", Proceedings of the ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I). ISOPE, Alaska, June.
  37. Ravichandran, N. and Bidorn, B. (2024), "Study on the dynamic response of offshore triceratops under freak waves", J. Mar. Sci. Eng., 12(8), 1260. https://doi.org/10.3390/jmse12081260.
  38. Rajeswari, K. and Nallayarasu, S. (2022), "Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine", Ship. Offshore Struct., 17(8), 1743-1754. https://doi.org/10.1080/17445302.2021.1938800.
  39. Riggs, H.R., Ertekin, R.C. and Mills, T.R.J. (1999), "Impact of stiffness on the response of a multimodule mobile offshore base", Int. J. Offshore Polar Eng., 9(2).
  40. Rony, J.S., Chaitanya Sai, K. and Karmakar, D. (2023), "Numerical investigation of offshore wind turbine combined with wave energy converter", Mar. Syst. Ocean Technol., 18(1), 14-44. https://doi.org/10.1007/s40868-023-00127-4.
  41. Ruzzo, C., Muggiasca, S., Malara, G., Taruffi, F., Belloli, M., Collu, M., Li, L., Brizzi, G. and Arena, F. (2021), "Scaling strategies for multi-purpose floating structures physical modeling: state of art and new perspectives", Appl. Ocean Res., 108, 102487. https://doi.org/10.1016/j.apor.2020.102487.
  42. Sand, S.E., Hansen, N.O., Klinting, P., Gudmestad, O.T. and Sterndorff, M.J. (1990), "Freak wave kinematics", Water wave kinematics, 535-549. https://doi.org/10.1007/978-94-009-0531-3_34.
  43. Song, C.Y., Moon, C.I. and Cha, J.H. (2012), "Mooring effects on dynamic behavior of sub-structure for floating-type offshore wind turbine system", Proceedings of the ISOPE International Ocean and Polar Engineering Conference, ISOPE, Rhodes, Greec, June.
  44. Tang, Y.G., Zhang, S.X., Zhang, R.Y. and Liu, H.X. (2007), "Development of study on the dynamic characteristics of deep water mooring system", J. Mar. Sci. Appl., 6(3), 17-23. https://doi.org/10.1007/s11804-007-7016-2.
  45. Thomas, A., VK, S. and Behera, M.R. (2023b), "Numerical investigation of a SPAR type floating offshore wind turbine platform under extreme waves", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 87578, V001T01A013. American Society of Mechanical Engineers, Exeter, UK, December. https://doi.org/10.1115/IOWTC2023-119363.
  46. Xiang, G., Xiang, X. and Yu, X. (2022), "Dynamic response of a spar-type floating wind turbine foundation with taut mooring system", J. Mar. Sci. Eng., 10(12), 1907. https://doi.org/10.3390/jmse10121907.
  47. Xue, S., Xu, G., Xie, W., Xu, L. and Jiang, Z. (2023), "Characteristics of freak wave and its interaction with marine structures: A review", Ocean Eng., 287, 115764. https://doi.org/10.1016/j.oceaneng.2023.115764.
  48. Xu, X. and Day, S. (2021), "Experimental investigation on dynamic responses of a spar-type offshore floating wind turbine and its mooring system behaviour", Ocean Eng., 236, 109488. https://doi.org/10.1016/j.oceaneng.2021.109488.
  49. Yang, R.Y., Wang, C.W., Huang, C.C., Chung, C.H., Chen, C.P. and Huang, C.J. (2022), "The 1: 20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system", Ocean Eng., 247, 110486. https://doi.org/10.1016/j.oceaneng.2021.110486.
  50. Zeng, F., Zhang, N., Huang, G., Gu, Q. and He, M. (2023), "Experimental study on dynamic response of a floating offshore wind turbine under various freak wave profiles", Mar. Struct., 88, 103362. https://doi.org/10.1016/j.marstruc.2022.103362.