DOI QR코드

DOI QR Code

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen (School of Science, Guangdong University of Petrochemical Technology) ;
  • Yahui Meng (School of Science, Guangdong University of Petrochemical Technology) ;
  • Huakun Wu (School of Computer Science, Guangdong Polytechnic Normal University) ;
  • ZY Gu (School of Science, Guangdong University of Petrochemical Technology) ;
  • Timothy Chen (Engineering and Applied Science, California Institute of Technology)
  • 투고 : 2024.05.30
  • 심사 : 2024.09.17
  • 발행 : 2024.10.10

초록

This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

키워드

과제정보

The authors are grateful for the research grants given to Ruei-Yuan Wang from the Projects of Talents Recruitment of GDUPT, Peoples R China under Grant NO. 2019rc098, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China. as well as to the anonymous reviewers for constructive suggestions.

참고문헌

  1. Ali, A., Zhang, C., Bibi, T. and Sun, L. (2024), "Experimental investigation of sliding-based isolation system with re-centering functions for seismic protection of masonry structures", Structures, 60, 105871. https://doi.org/10.1016/j.istruc.2024.105871.
  2. Ang, A.H.-S. and Tang, W.H. (2007), Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, John Wiley & Sons, Hoboken, NJ, USA.
  3. Askan, A. and Yucemen, M.S. (2010), "Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey", Struct. Saf., 32(4), 262-271. https://doi.org/10.1016/j.strusafe.2010.04.001.
  4. Bai, L., Han, P., Wang, J. and Wang, J. (2024), Throughput Maximization for Multipath Secure Transmission in Wireless Ad-Hoc Networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2024.3409539.
  5. Ban, Y., Liu, Y., Yin, Z., Liu, X., Liu, M., Yin, L. and Zheng, W. (2024), "Micro-directional propagation method based on user clustering", Comput. Inform., 42(6), 1445-1470. https://doi.org/10.31577/cai_2023_6_1445.
  6. Barbato, M., Gu, Q. and Conte, J.P. (2010), "Probabilistic pushover analysis of structural and soil-structure systems", J. Struct. Eng., 136(11), 1330-1341. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000231.
  7. Cao, B., Zhao, J., Liu, X. and Li, Y. (2024), "Adaptive 5G-and-beyond network-enabled interpretable federated learning enhanced by neuroevolution", Sci. China Inform. Sci., 67(7), 170306. https://doi.org/10.1007/s11432-023-4011-4.
  8. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  9. Dai, Z., Peng, L. and Qin, S. (2023), "Experimental and numerical investigation on the mechanism of ground collapse induced by underground drainage pipe leakage", Environ. Earth Sci., 83(1), 32. https://doi.org/10.1007/s12665-023-11344-w.
  10. Deng, L., Zhang, W., Deng, L., Shi, Y., Zi, J., He, X. and Zhu, H. (2024), "Forecasting and early warning of shield tunnelling-induced ground collapse in rock-soil interface mixed ground using multivariate data fusion and Catastrophe Theory", Eng. Geology, 335, 107548. https://doi.org/10.1016/j.enggeo.2024.107548.
  11. Der Kiureghian, A. (2005), First- and Second-Order Reliability Methods, Engineering Design Reliability Handbook, CRC Press, Boca Raton, FL, USA.
  12. Dolsek, M. (2012), "Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty", Struct. Infrastruct. Eng., 8(10), 939-953. https://doi.org/10.1080/15732479.2011.574813.
  13. Ellingwood, B.R., Celik, O.C. and Kinali, K. (2007), "Fragility assessment of building structural systems in Mid-America", Earthq. Eng. Struct. Dyn., 36(13), 1935-1952. https://doi.org/10.1002/eqe.693.
  14. Elnashai, A.S., Papanikolaou, V.K. and Lee, D. (2010), ZEUS NL - A System for Inelastic Analysis of Structures, User's Manual; Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  15. Federal Emergency Management Agency (FEMA) (2013), Hazus-MH 2.1: Technical Manual. Multi-Hazard Loss Estimation Methodology, Earthquake Model.
  16. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  17. Giordano, N., De Luca, F., Sextos, A., Cortes, F.R., Ferreira, C.F. and Wu, J. (2021), "Empirical seismic fragility models for Nepalese school buildings", Nat. Haz., 105, 339-362. https://doi.org/10.1007/s11069-020-04312-1.
  18. Guneyisi, E.M. and Altay, G. (2008), "Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes", Struct. Saf., 30(5), 461-480. https://doi.org/10.1016/j.strusafe.2007.06.001.
  19. Haukaas, T. (2003), Finite Element Reliability and Sensitivity Methods for Performance-Based Engineering, Ph.D. Dissertation; University of California, Berkeley, CA, USA.
  20. Hu, C., Dong, B., Shao, H., Zhang, J. and Wang, Y. (2023), "Toward purifying defect feature for multilabel sewer defect classification", IEEE Transact. Instrument. Measure., 72, 1-11. https://doi.org/10.1109/TIM.2023.3250306.
  21. Hu, F., Mou, S., Wei, S., Liping Qiu, Hu, H. and Zhou, H. (2024), "Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents", Energy Strategy Rev., 51, 101309. https://doi.org/10.1016/j.esr.2024.101309.
  22. Huang, H., Xie, L., Liu, M., Lin, J. and Shen, H. (2024), "An embedding model for temporal knowledge graphs with long and irregular intervals", Know.-Based Syst., 296(C). https://doi.org/10.1016/j.knosys.2024.111893.
  23. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479.
  24. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343.
  25. Hueste, M.B.D. and Bai, J.W. (2007), "Seismic retrofit of a reinforced concrete flat-slab structure: Part II-Seismic fragility analysis", Eng. Struct., 29(6), 1178-1188. https://doi.org/10.1016/j.engstruct.2006.07.022.
  26. Jaiswal, K.S., Aspinall, W., Perkins, D., Wald, D. and Porter, K.A. (2012), "Use of expert judgment elicitation to estimate seismic vulnerability of selected building types", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  27. Ji, J., Elnashai, A.S. and Kuchma, D.A. (2009), "Seismic fragility relationships of reinforced concrete high-rise buildings", Struct. Des. Tall Spec., 18(3), 259-277. https://doi.org/10.1002/tal.408.
  28. Kang, S., Kim, B., Bae, S., Lee, H. and Kim, M. (2019), "Earthquake-induced ground deformations in the low-seismicity region: a case of the 2017 M5.4 Pohang, South Korea, earthquake", Earthq. Spectra, 35, 1235-1260. https://doi.org/10.1193/062318EQS160M.
  29. Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. and Penelis, G. (2006), "A hybrid method for the vulnerability assessment of R/C and URM buildings", B. Earthq. Eng., 4(4), 391-413. https://doi.org/10.1007/s10518-006-9023-0.
  30. Kappos, A.J., Stylianidis, K.C. and Pitilakis, K. (1998), "Development of seismic risk scenarios based on a hybrid method of vulnerability assessment", Nat. Haz., 17(2), 177-192, https://doi.org/10.1023/A:1008083021022.
  31. Kim, B., Ji, Y., Kim, M., Lee, Y.-J., Kang, H., Yun, N.-R., Kim, H. and Lee, J. (2020a), "Building damage caused by the 2017 M5.4 Pohang, South Korea, earthquake, and effects of ground conditions", J. Earthq. Eng., 1-19. https://doi.org/10.1080/13632469.2020.1785585.
  32. Kim, H.-S., Kim, M., Baise, L.G. and Kim, B. (2020b), "Local and regional evaluation of liquefaction potential index and liquefaction severity number for liquefaction-induced sand boils in Pohang, South Korea", Soil Dyn. Earthq. Eng., 106459. https://doi.org/10.1016/j.soildyn.2020.106459.
  33. Kim, H., Sim, S.-H., Lee, J., Lee, Y.-J. and Kim, J.-M. (2017), "Flood fragility analysis for bridges with multiple failure modes", Adv. Mech. Eng., 9(3), 1-11. https://doi.org/10.1177/1687814017696415.
  34. Kim, T., Chu, Y., Kim, S.R. and Bhandari, D. (2018), "Seismic behavior of domestic piloti-type buildings damaged by 2017 Pohang earthquake", J. Earthq. Eng. Soc. Korea, 22(3), 161-168, (in Korean), https://doi.org/10.5000/EESK.2018.22.3.161.
  35. Kircher, C.A., Whitman, R.V. and Holmes, W.T. (2006), "HAZUS earthquake loss estimation methods", Nat. Haz. Rev., 7(2), 45-59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45).
  36. Kwon, O.-S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010.
  37. Lee, J., Lee, Y.-J., Kim, H., Sim, S.-H. and Kim, J.-M. (2016), "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges", Smart Struct. Syst., Int. J., 17(1), 149-165. http://dx.doi.org/10.12989/sss.2016.17.1.149.
  38. Lee, Y.-J. and Moon, D.-S. (2014), "A new methodology of the development of seismic fragility curves", Smart Struct. Syst., Int. J., 14(5), 847-867. http://dx.doi.org/10.12989/sss.2014.14.5.847.
  39. Lee, Y.-J. and Song, J. (2012), "Finite-element-based system reliability analysis of fatigue-induced sequential failures", Reliab. Eng. Syst. Safe., 108, 131-141. https://doi.org/10.1016/j.ress.2012.05.007.
  40. Lee, Y.-J., Song, J. and Tuegel, E. (2008), "Finite element system reliability analysis of a wing torque box", Proceedings of the 10th AIAA Nondeterministic Approaches Conference, Schaumburg, IL, USA, April.
  41. Li, L.-X., Li, H.-N. and Li, C. (2018), "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., Int. J., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677.
  42. Liu, G., Meng, H., Song, G., Bo, W., Zhao, P., Ning, B and Xu, X. (2024), "Numerical simulation of wedge failure of rock slopes using three-dimensional discontinuous deformation analysis", Environ. Earth Sci., 83(10), 310. https://doi.org/10.1007/s12665-024-11619-w.
  43. Liu, Z. and Zhang, Z. (2017), "Fragility analysis of concrete-filled steel tube arch bridge subjected to near-fault ground motion considering the wave passage effect", Smart Struct. Syst., Int. J., 19(4), 415-429. https://doi.org/10.12989/sss.2017.19.4.415.
  44. Martinez, A., Hube, M.A. and Rollins, K.M. (2017), "Analytical fragility curves for non-skewed highway bridges in Chile", Eng. Struct., 141, 530-542. https://doi.org/10.1016/j.engstruct.2017.03.041.
  45. Montiel, M.A. and Ruiz, S.E. (2007), "Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions", Earthq. Eng. Struct. Dyn., 36(13), 1915-1934. https://doi.org/10.1002/eqe.711.
  46. Moon, D.-S., Lee, Y.-J. and Lee, S. (2018), "Fragility analysis of space reinforced concrete frame structures with structural irregularity in plan", J. Struct. Eng., 144(8), 04018096. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002092.
  47. Moradloo, J., Naserasadi, K. and Zamani, H. (2018), "Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model", Struct. Eng. Mech., Int. J., 68(6), 747-760. https://doi.org/10.12989/sem.2018.68.6.747.
  48. Mosleh, A. and Apostolakis, G. (1986), "The assessment of probability distributions from expert opinions with an application to seismic fragility curves", Risk Anal., 6(4), 447-461. https://doi.org/10.1111/j.1539-6924.1986.tb00957.x.
  49. Paik, I.-Y., Shim, C.-S., Chung, Y.-S. and Sang, H.-J. (2011), "Statistical properties of material strength of concrete, re-bar and strand used in domestic construction site", J. Korea Concr. Inst., 23(4), 421-430. [In Korean] https://doi.org/10.4334/JKCI.2011.23.4.421.
  50. Park, Y.-J. and Ang, A.H.-S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  51. Pitilakis, K., Crowley, H. and Kaynia, A.M. (2014), "SYNER-G: typology definition and fragility functions for physical elements at seismic risk", Geotec. Geol. Earthq. Eng., 27, 1-28. https://doi.org/10.1007/978-94-007-7872-6.
  52. Qin, C., Huang, G., Yu, H., Zhang, Z., Tao, J. and Liu, C. (2024), "Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters", Autom. Construct., 165, 105563. https://doi.org/10.1016/j.autcon.2024.105563.
  53. Qiu, H., Su, L., Tang, B., Yang, D., Ullah, M., Zhu, Y. and Kamp, U. (2024), "The effect of location and geometric properties of landslides caused by rainstorms and earthquakes", Earth Surface Processes Landforms, 49(7), 2067-2079. https://doi.org/10.1002/esp.5816.
  54. Ramamoorthy, S.K., Gardoni, P. and Bracci, J.M. (2006), "Probabilistic demand models and fragility curves for reinforced concrete frames", J. Struct. Eng., 132(10), 1563-1572.
  55. Razzaghi, M.S., Safarkhanlou, M., Mosleh, A. and Hosseini, P. (2018), "Fragility assessment of RC bridges using numerical analysis and artificial neural networks", Earthq. Struct., Int. J., 15(4), 431-441. http://dx.doi.org/10.12989/eas.2018.15.4.431.
  56. Rossetto, T. and Elnashai, A. (2003), "Derivation of vulnerability functions for European-type RC structures based on observational data", Eng. Struct., 7(3), 1241-1263. https://doi.org/10.1016/S0141-0296(03)00060-9.
  57. Rosti, A., Rota, M. and Penna, A. (2020), "Empirical fragility curves for Italian URM buildings", Bull. Earthq. Eng., 19(8), 3057-3076. https://doi.org/10.1007/s10518-020-00845-9.
  58. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Processing, 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  59. Silva, V., Crowley, H., Varum, H., Pinho, R. and Sousa, R. (2014), "Evaluation of analytical methodologies used to derive vulnerability functions", Earthq. Eng. Struct. Dyn., 43(2), 181-204. https://doi.org/10.1002/eqe.2337.
  60. Sim, C., Laughery, L., Chiou, T.C. and Weng, P.-W. (2018), 2017 Pohang Earthquake - Reinforced Concrete Building Damage Survey. https://datacenterhub.org/resources/14728.
  61. Singhal, A. and Kiremidjian, A.S. (1998), "Bayesian updating of fragilities with application to RC frames", J. Struct. Eng., 124(8), 922-929.
  62. Steelman, J., Song, J. and Hajjar, J.F. (2007), "Integrated data flow and risk aggregation for consequence-based risk management of seismic regional loss", Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA, November.
  63. Sun, Z., Elsworth, D., Cui, G., Li, Y., Zhu, A. and Chen, T. (2024), "Impacts of rate of change in effective stress and inertial effects on fault slip behavior: New insights into injection-induced earthquakes", J. Geophys. Res. Solid Earth, 129(2), e2023JB027126. https://doi.org/10.1029/2023JB027126.
  64. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  65. Wang, B., Zheng, W., Wang, R., Lu, S., Yin, L., Wang, L. and Chen, X. (2024a), "Stacked noise reduction auto encoder-ocean: A novel personalized recommendation model enhanced", Systems, 12(6), 188. https://doi.org/10.3390/systems12060188.
  66. Wang, Y. and Sigmund, O. (2024b), "Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint", Struct. Multidiscipl. Optimiz., 67(1), 5. https://doi.org/10.1007/s00158-023-03698-3.
  67. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  68. Wen, Y.K., Ellingwood, B.R. and Bracci, J.M. (2004), "Vulnerability function framework for consequence-based engineering", MAE Center Report 04-04.
  69. Xu, X., Lin, Z., Li, X., Shang, C. and Shen, Q. (2022), "Multi-objective robust optimisation model for MDVRPLS in refined oil distribution", Int. J. Product. Res., 60(22), 6772-6792. https://doi.org/10.1080/00207543.2021.1887534.
  70. Yao, Y., Huang, H., Zhang, W., Ye, Y., Xin, L. and Liu, Y. (2022), "Seismic performance of steel-PEC spliced frame beam", J. Construct. Steel Res., 197, 107456. https://doi.org/10.1016/j.jcsr.2022.107456.
  71. Yao, Y., Zhou, L., Huang, H., Chen, Z. and Ye, Y. (2023), "Cyclic performance of novel composite beam-to-column connections with reduced beam section fuse elements", Structures, 50, 842-858. https://doi.org/10.1016/j.istruc.2023.02.054.
  72. Yin, L., Wang, L., Cai, Z., Lu, S., Wang, R., AlSanad, A. and Zheng, W. (2024), "DPAL-BERT: A faster and lighter question answering model", Comput. Modeling Eng. Sci., https://doi.org/10.32604/cmes.2024.052622.
  73. Yoon, S., Lee, Y.-J. and Jung, H.-J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission", Int. J. Disast. Risk Re., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002.
  74. Yu, X., Lu, D. and Li, B. (2016), "Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis", Earthq. Struct., Int. J., 10(1), 141-161. https://doi.org/10.12989/eas.2016.10.1.141.
  75. Zhang, C., Duan, C. and Sun, L. (2024), "Inter-storey isolation versus base isolation using friction pendulum systems", Int. J. Struct. Stab. Dyn., 24(02), 2450022. https://doi.org/10.1142/S0219455424500226.
  76. Zhang, W., Zheng, D., Huang, Y. and Kang, S. (2024), "Experimental and simulative analysis of flexural performance in UHPC-RC hybrid beams", Construct. Build. Mater., 436, 136889. https://doi.org/10.1016/j.conbuildmat.2024.136889.
  77. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Path Planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robotic. Autom. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828.
  78. Zhou, Y., Zhu, D., Hu, J., Lu, J., Yang, Y., Zou, X. and Kang, Y. (2024), "Magnitude-phase characteristics analysis of inertia for DFIG-Based wind turbines", IEEE Transact. Power Electron., 1-13. https://doi.org/10.1109/TPEL.2024.3410294.
  79. Zhu, C. (2023), "Intelligent robot path planning and navigation based on reinforcement learning and adaptive control", J. Logistics, Inform. Service Sci., 10(3), 235-248. https://doi.org/10.33168/JLISS.2023.0318.
  80. Zhu, C. Wang, X., Zhou, G., Nam, K. and Ji, Z. (2023), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76, 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  81. Zhu, D., Ma, Y., Li, X., Fan, L., Tang, B. and Kang, Y. (2024a), "Transient stability analysis and damping enhanced control of grid-forming wind turbines considering current saturation procedure", IEEE Transact. Energy Conversion, 1-11. https://doi.org/10.1109/TEC.2024.3442925.
  82. Zhu, D., Wang, Z., Ma, Y., Hu, J., Zou, X. and Kang, Y. (2024b), "Hybrid LVRT control of doubly-fed variable speed pumped storage to shorten crowbar operational duration", IEEE Transact. Power Electron., 1-11. https://doi.org/10.1109/TPEL.2024.3435063.