DOI QR코드

DOI QR Code

Characterization of elastic modulus and fracture toughness of randomly oriented chopped glass fibers functionally graded materials

  • Sayed Mohammad Hossein Izadi (College of Interdisciplinary Science and Technology, University of Tehran) ;
  • Mahdi Fakoor (College of Interdisciplinary Science and Technology, University of Tehran) ;
  • Babak Mirzavand (College of Interdisciplinary Science and Technology, University of Tehran)
  • Received : 2024.02.20
  • Accepted : 2024.09.28
  • Published : 2024.10.10

Abstract

A cost-effective fabrication method suitable for research purposes is proposed in this study. The elastic modulus of the fabricated functionally graded materials is evaluated and compared using two experimental methods: the three-point bending test and the tensile test, with a focus on the fiber volume fraction of the FGM layers. New methods for computing the elastic modulus are introduced, which are based on Castigliano's theorem and the secant modulus concept, incorporating the non-linear behavior of the material. Additionally, the mode I fracture toughness of the FGM layers is measured accurately using the three-point bending test and finite element analysis, and the influence of varying fiber volume fractions on this parameter is investigated through statistical analysis. Results indicate that while an increase in fiber volume fraction correlates with a rise in elastic modulus, it does not necessarily lead to an enhancement in mode I fracture toughness, highlighting the complex interactions between material composition and mechanical properties.

Keywords

References

  1. Barati, E., Mohandesi, J.A. and Alizadeh, Y. (2010), "The effect of notch depth on J-integral and critical fracture load in plates made of functionally graded aluminum-silicone carbide composite with U-notches under bending", Mater. Des., 31(10), 4686-4692. https://doi.org/10.1016/j.matdes.2010.05.025.
  2. Beer, F.E.J. and DeWolf, J. (2014), 1 Stress Mechanics of Materials.
  3. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614.
  4. Gayen, D., Tiwari, R. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: a review", Compos. Part B: Eng., 173, 106982.
  5. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  6. Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Cleaner Product., 172, 218-226. https://www.sciencedirect.com/science/article/pii/S0959652617323582.
  7. Golewski, G.L. (2019), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measurement, 135, 96-105. https://www.sciencedirect.com/science/article/pii/S0263224118310868. 10868
  8. Golewski, G.L. (2023), "Concrete composites based on quaternary blended cements with a reduced width of initial microcracks", Appl. Sci., 13(12), 7338. https://www.mdpi.com/2076-3417/13/12/7338#.
  9. Golewski, G.L. (2023), "Effect of coarse aggregate grading on mechanical parameters and fracture toughness of limestone concrete", Infrastructures, 8(8), 117. https://www.mdpi.com/2412-3811/8/8/117.
  10. Golewski, G.L. (2023), "Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials", Struct. Eng. Mech., 86(4), 431-441.
  11. Golewski, G.L. (2024), "Enhancement fracture behavior of sustainable cementitious composites using synergy between fly ash (FA) and nanosilica (NS) in the assessment based on digital image processing procedure", Theoretic. Appl. Fracture Mech., 131, 104442. https://www.sciencedirect.com/science/article/pii/S0167844224001915.
  12. Golewski, G.L. (2024), "Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using noncontact measurement method", Adv. Nano Res., 16(3), 217. http://dx.doi.org/10.12989/anr.2024.16.3.217.
  13. Gu, P. and Asaro, R.J. (1997), "Cracks in functionally graded materials", Int. J. Solids Struct., 34(1), 1-17.https://linkinghub.elsevier.com/retrieve/pii/S135983681930678X (December 21, 2021).
  14. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
  15. Jin, X., Wu, L., Guo, L., Yu, H. and Sun, Y. (2009), "Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials", Eng. Fract. Mech., 76(12), 1800-1810. https://linkinghub.elsevier.com/retrieve/pii/S001379440900112X (October 18, 2022).
  16. Jin, Z.H. and Batra, R.C. (1996), "Some basic fracture mechanics concepts in functionally graded materials", J. Mech. Phys. Solids, 44(8), 1221-1235. https://doi.org/10.1016/0022-5096(96)00041-5.
  17. Leng, Y., Hu, Y., Liu, S., Yang, Z., Sun, N. and Wu, T. (2023), "In-situ observation of fracture behaviors in TiB2p/Al7050 composites with different gradient structure", Mater. Sci. Eng.: A, 883, 145501. https://www.sciencedirect.com/science/article/pii/S0921509323009255.
  18. Method, Standard Test (2017), ASTM E111-17, Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus, Practice.
  19. Mohammadi, H., Salavati, H., Mosaddeghi, M.R., Yusefi, A. and Berto, F. (2017), "Local strain energy density to predict mixed mode I+ II fracture in specimens made of functionally graded materials weakened by V-notches with end holes", Theoretic. Appl. Fract. Mech., 92, 47-58.
  20. Monfared, M.M. and Ayatollahi, M. (2016), "Multiple crack problems in nonhomogeneous orthotropic planes under mixed mode loading conditions", Eng. Fract. Mech., 155, 1-17. https://linkinghub.elsevier.com/retrieve/pii/S0013794415006979 (December 21, 2021).
  21. Mortensen, A. and Suresh, S. (2013), "Functionally graded metals and metal-ceramic composites: Part 1 processing", Int. Mater. Rev., 40(6), 239-265. https://www.tandfonline.com/doi/abs/10.1179/imr.1995.40.6.239 (December 29, 2021).
  22. Mousa, S., Abd-Elhady, A.A., Abu-Sinna, A., Enab, T., Alhazmi, W.H. and Sallam, H. (2019), "Mixed mode crack growth in functionally graded material under three-point bending", Procedia Struct. Integrity, 17, 284-291.
  23. Ogihara, S. and Jun, K. (2010), "Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method", Compos. Sci. Technol., 70(1), 143-150. https://www.sciencedirect.com/science/article/pii/S0266353809003546.
  24. Ozturk, M. and Erdogan, F. (1999), "The mixed mode crack problem in an inhomogeneous orthotropic medium", Int. J. Fract., 98, 243-261. https://doi.org/10.1023/A:1018352203721.
  25. Pan, H., Song, T. and Ge, H. (2021), "A probabilistic study on the mixed-mode fracture in functionally graded materials", Eng. Fail. Anal., 120, 105038.
  26. Rasti, S., Showkati, H., Aghbashi, B.M., Ozani, S.N. and Zirakian, T. (2023), "Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes", Steel Compos. Struct., 47(6), 679-691. https://doi.org/10.12989/scs.2023.47.6.679.
  27. Salavati, H., Mohammadi, H., Yusefi, A. and Berto, F. (2018), "Fracture assessment of V-notched specimens with end holes made of tungsten-copper functionally graded material under mode I loading", Theoretic. Appl. Fract. Mech., 97, 357-367. https://doi.org/10.1016/j.tafmec.2017.06.013.
  28. Schramm, B., Richard, H.A. and Kullmer, G. (2016), "Theoretical, experimental and numerical investigations on crack growth in fracture mechanical graded structures", Eng. Fract. Mech., 167, 188-200. https://doi.org/10.1016/j.engfracmech.2016.05.003.
  29. Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.