DOI QR코드

DOI QR Code

Flexural and shear behavior of bolt-connected U-shaped steel beams filled with concrete

  • Chul-Goo Kim (Department of Architectural and Urban Systems Engineering, Ewha Womans University) ;
  • Sang-Hyun Lee (School of Architecture, Dankook University)
  • Received : 2023.12.27
  • Accepted : 2024.09.28
  • Published : 2024.10.10

Abstract

Thin-walled concrete-filled U-shaped steel beams have been recently used in building structures for shortening the construction period and cost efficiency of structural members. In this study, the flexural and shear behavior of newly developed bolt-connected U-shaped steel beams filled with concrete was experimentally evaluated considering load conditions for positive and negative moments, and types of U-shaped steel sections. Because the cross sections are not symmetrical about a horizontal axis, compressive buckling of bottom plates was observed along with web shear buckling under negative moment loading, while the slab concrete under compression was crushed under a positive moment loading. Despite such different shear failure modes depending on load conditions, the shear strength of the composite beams can be conservatively predicted using AISC 360-16 and Eurocode 4. Although the shear contribution of filled concrete is neglected according to the current design codes, the shear capacity of the steel web considering the shear buckling coefficient corresponding to the web width-to-thickness ratio reasonably predicts the test results. In addition, for deep composite beams, the longitudinal lips of a U-shaped steel section anchored into filled concrete can improve the interfacial bond between steel and concrete, thereby enhancing the shear contribution of the steel web.

Keywords

Acknowledgement

This study was supported by CGS Plan Co. and the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2018R1A6A1A07025819 and NRF-2020R1F1A1049971).

References

  1. Abdel-Sayed, G. (1982), "Composite cold-formed steel-concrete structural system", International Specialty Conference on Cold-Formed Steel Structures, 485-510.
  2. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Shear strengthening of RC beams with web-bonded continuous steel plates", Construct. Build. Mater., 20(5), 296-307. https://doi.org/10.1016/j.conbuildmat.2005.01.026
  3. Adhikary, B.B., Mutsuyoshi, H. and Sano, M. (2000), "Shear strengthening of reinforced concrete beams using steel plates bonded on beam web: experiments and analysis", Construct. Build. Mater., 14(5), 237-244. https://doi.org/10.1016/s0950-0618(00)00023-4
  4. AISC 360 (2010), Specification for Structural Steel Buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago, IL, USA.
  5. AISC 360 (2016), Specification for Structural Steel Buildings (ANSI/AISC 360-16). American Institute of Steel Construction, Chicago, IL, USA.
  6. Almeida, M.M.d.R., de Souza, A.S.C. and de Albuquerque, A.T. (2022), "Experimental study of prestressed steel-concrete composite beams with profiled steel decking", J. Construct. Steel Res., 194, 107331. https://doi.org/10.1016/j.jcsr.2022.107331.
  7. Arikoglu, P., Baran, E. and Topkaya, C. (2020), "Behavior of channel connectors in steel-concrete composite beams with precast slabs", J. Construct. Steel Res., 172, 106167. https://doi.org/10.1016/j.jcsr.2020.106167.
  8. Bamaga, S., Tahir, M.M., Tan, T., Mohammad, S., Yahya, N., Saleh, A., Mustaffar, M., Osman, M. and Rahman, A. (2013), "Feasibility of developing composite action between concrete and cold-formed steel beam", J. Central South Univ., 20(12), 3689-3696. https://doi.org/10.1007/s11771-013-1897-9.
  9. Barnes, R., Baglin, P., Mays, G. and Subedi, N. (2001), "External steel plate systems for the shear strengthening of reinforced concrete beams", Eng. Struct., 23(9), 1162-1176. https://doi.org/10.1016/s0141-0296(00)00124-3.
  10. Barnes, R.A. and Mays, G.C. (2006), "Strengthening of reinforced concrete beams in shear by the use of externally bonded steel plates: Part 1-Experimental programme", Construct. Build. Mater., 20(6), 396-402. https://doi.org/10.1016/j.conbuildmat.2005.01.034.
  11. Bezerra, L.M., Cavalcante, O.O., Chater, L. and Bonilla, J. (2018), "V-shaped shear connector for composite steel-concrete beam", J. Construct. Steel Res., 150, 162-174. https://doi.org/10.1016/j.jcsr.2018.07.016.
  12. Cao, L.-L., Li, Y.-J., Dhanasekar, M. and Lu, C.-H. (2021), "Experimental and numerical study on flexural performance of a novel steel-encased concrete composite beam", KSCE J. Civil Eng., 25(5), 1837-1848. https://doi.org/10.1007/s12205-021-1196-1.
  13. Chajes, A. (1974), Principles of Structural Stability theory, Prentice Hall, New Jersey, USA.
  14. Chen, J., Zhang, H. and Yu, Q.-Q. (2019), "Static and fatigue behavior of steel-concrete composite beams with corroded studs", J. Construct. Steel Res., 156, 18-27. https://doi.org/10.1016/j.jcsr.2019.01.019.
  15. Chen, L.-h., Li, S.-t., Zhang, H.-y. and Wu, X.-f. (2018), "Experimental study on mechanical performance of checkered steel-encased concrete composite beam", J. Construct. Steel Res., 143, 223-232. https://doi.org/10.1016/j.jcsr.2017.12.021.
  16. Eurocode (2004) Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for building. European Committee for Standardization; Brussels, Belgium.
  17. Jun, S.-C., Lee, C.-H., Han, K.-H. and Kim, J.-W. (2018), "Flexural behavior of high-strength steel hybrid composite beams", J. Construct. Steel Res., 149, 269-281. https://doi.org/10.1016/j.jcsr.2018.07.020.
  18. Jung, E.-b., Lee, S.-H., Yoo, J.-H., Roeder, C. and Lehman, D. (2017), "Shear behavior of large-diameter concrete filled tube (CFT)", Int. J. Steel Struct., 17(4), 1651-1665. https://doi.org/10.1007/s13296-017-1229-2.
  19. Khandaker, M. and Hossain, A. (2003), "Experimental & theoretical behavior of thin walled composite filled beams", Electronic J. Struct. Eng., 3, 117-139. https://doi.org/10.56748/ejse.334.
  20. Kim, C.-G., Kim, H.-S. and Lee, S.-H. (2023a), "Experimental investigation of flexural behavior of U-shaped steel-concrete composite beams with bolt connections under a negative bending moment", J. Struct. Eng., 149(7), 04023091. https://doi.org/10.1061/jsendh.steng-12094.
  21. Kim, C.-G., Kim, H.-S. and Lee, S.-H. (2023b), "Flexural behavior of U-shaped steel-concrete composite beams under positive bending", J. Construct. Steel Res., 208, 108008. https://doi.org/10.1016/j.jcsr.2023.108008.
  22. Kim, C.-G., Park, H.-G. and Eom, T.-S. (2020), "Shear strength of exterior beam-column joints with limited ductility details", J. Struct. Eng., 146(2), 04019204. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002483.
  23. Kim, S.-B., Lee, E.-T., Kim, J.-R. and Kim, S.-S. (2016), "Experimental study on bending behavior and seismic performance of hybrid composite beam with new shape", Int. J. Steel Struct., 16(2), 477-488. https://doi.org/10.1007/s13296-016-6018-9.
  24. Kodur, V.K.R. and Naser, M.Z. (2018), "Approach for shear capacity evaluation of fire exposed steel and composite beams", J. Construct. Steel Res., 141, 91-103. https://doi.org/10.1016/j.jcsr.2017.11.011.
  25. Lawson, R.M. and Taufiq, H. (2019), "Partial shear connection in light steel composite beams", J. Construct. Steel Res., 154, 55-66. https://doi.org/10.1016/j.jcsr.2018.11.005.
  26. Li, J., Wang, Z., Li, F., Mou, B. and Wang, T. (2022), "Experimental and numerical study on the seismic performance of an L-shaped double-steel plate composite shear wall", J. Build. Eng., 49, 104015. https://doi.org/10.1016/j.jobe.2022.104015.
  27. Lin, C.M. (2000), "Seismic behaviour and design of reinforced concrete interior beam column joints", Research Rep. EQC Project No. 97/294. Univ. of Canterbury. http://hdl.handle.net/10092/15092.
  28. Liu, J., Zhao, Y., Chen, Y. F., Xu, S. and Yang, Y. (2018), "Flexural behavior of rebar truss stiffened cold-formed U-shaped steel-concrete composite beams", J. Construct. Steel Res., 150, 175-185. https://doi.org/10.1016/j.jcsr.2018.08.011.
  29. Liu, J., Zhao, Y., Yang, Y. and Chen, Y.F. (2019), "Bending capacity and elastic stiffness for a novel configuration of cold-formed U-shaped steel-and-concrete composite beams", J. Struct. Eng., 145(10), 04019106. https://doi.org/10.1061/(asce)st.1943-541x.0002394.
  30. Liu, Y., Guo, L., Qu, B. and Zhang, S. (2017), "Experimental investigation on the flexural behavior of steel-concrete composite beams with U-shaped steel girders and angle connectors", Eng. Struct., 131, 492-502. https://doi.org/10.1016/j.engstruct.2016.10.037.
  31. Nakamura, S.-i. (2002), "Bending behavior of composite girders with cold formed steel U section", J. Struct. Eng., 128(9), 1169-1176. https://doi.org/10.1061/(asce)0733-9445(2002)128:9(1169).
  32. Nguyen, R.P. (1991), "Thin-walled, cold-formed steel composite beams", J. Struct. Eng., 117(10), 2936-2952. https://doi.org/10.1061/(asce)0733-9445(1991)117:10(2936).
  33. Subedi, N. and Baglin, P. (1998), "External plate reinforcement for concrete beams", J. Struct. Eng., 124(12), 1490-1495. https://doi.org/10.1061/(asce)0733-9445(1998)124:12(1490).
  34. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, Toronto, Canada.
  35. Turetta, M., Odenbreit, C., Khelil, A. and Martin, P.-O. (2020), "Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam", Steel Compos. Struct., 34(3), 441-452.
  36. Wang, Y.-H., Yu, J., Liu, J.-P., Zhou, B.-X. and Chen, Y. F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Construct. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  37. Xiong, G., Li, W., Wang, X., Liu, J., Bai, Y. and Chen, Y.F. (2022), "Flexural behavior of prefabricated high-strength steel-concrete composite beams with steel block connectors", J. Construct. Steel Res., 197, 107507. https://doi.org/10.1016/j.jcsr.2022.107507.
  38. Xu, C., Su, Q., Wu, C., and Sugiura, K. (2011), "Experimental study on double composite action in the negative flexural region of two-span continuous composite box girder", J. Construct. Steel Res., 67(10), 1636-1648. https://doi.org/10.1016/j.jcsr.2011.04.007.
  39. Xu, X., Cheng, R., Yang, P., Chen, K. and Li, J. (2021), "Behavior of T-shaped CFST column and U-shaped steel-concrete composite beam joints", J. Build. Eng., 43, 103157. https://doi.org/10.1016/j.jobe.2021.103157.
  40. Xu, X., Cheng, R., Yang, P., Zhang, J. and Liu, J. (2022), "Experimental study of U-shaped steel-concrete composite beam to square CFST column joints", J. Construct. Steel Res., 192, 107220. https://doi.org/10.1016/j.jcsr.2022.107220.
  41. Xu, X., Cheng, R., Yang, P.,and Yu, Y. (2022), "Experimental and numerical investigations on square CFST column to U-shaped steel-concrete composite beam joints with internal T-shaped diaphragms", J. Build. Eng., 60, 105172. https://doi.org/10.1016/j.jobe.2022.105172.
  42. Yang, I.-S., Lee, D., Ju, H., Lee, S.-J. and Oh, J.-Y. (2022), "Steel-concrete composite beam-column connections utilizing prefabricated permanent steel form", J. Build. Eng., 46, 103836. https://doi.org/10.1016/j.jobe.2021.103836.
  43. Yang, Y., Sun, T. and Han, J. (2022), "Study on shear behavior of web-embedded U-shaped steel-concrete composite beam", Eng. Mech., 39(7), 120-136. https://doi.org/10.6052/j.issn.1000-4750.2021.04.0251.
  44. Zhang, J., Hu, X., Fu, W., Du, H., Sun, Q. and Zhang, Q. (2020), "Experimental and theoretical study on longitudinal shear behavior of steel-concrete composite beams", J. Construct. Steel Res., 171, 106144. https://doi.org/10.1016/j.jcsr.2020.106144.
  45. Zhao, Y., Li, Z., Ma, H., Kan, J. and Zhang, N. (2022), "Shear behavior of U-shaped steel-concrete composite beams with positive and negative loading", Int. J. Civil Eng., 20(10), 1229-1246. https://doi.org/10.1007/s40999-022-00723-2.
  46. Zhao, Y., Zhou, X., Yang, Y., Chen, Y.F. and Gurupackiam, S. (2020), "Stiffness and cracking behavior of new U-shaped steel and concrete composite beam under negative bending", J. Struct. Eng., 146(5), 04020046. https://doi.org/10.1061/(asce)st.1943-541x.0002594.
  47. Zhao, Y., Zhou, X., Yang, Y., Liu, J. and Chen, Y.F. (2019), "Shear behavior of a novel cold-formed U-shaped steel and concrete composite beam", Eng. Struct., 200, 109745. https://doi.org/10.1016/j.engstruct.2019.109745.
  48. Zhou, X., Zhao, Y., Liu, J., Chen, Y.F. and Yang, Y. (2019), "Bending experiment on a novel configuration of cold-formed U-shaped steel-concrete composite beams", Eng. Struct., 180, 124-133. https://doi.org/10.1016/j.engstruct.2018.11.001.