DOI QR코드

DOI QR Code

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Received : 2023.11.25
  • Accepted : 2024.09.27
  • Published : 2024.10.10

Abstract

This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.

Keywords

References

  1. Abbasnia, R., Mirzaei, B. and Yousefbeik, S. (2016), "A two-step method composed of wavelet transform and model updating method for multiple damage diagnosis in beams", J. Vibroeng., 18(3), 1497-1513. https://doi.org/10.21595/jve.2016.16721.
  2. Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Archives Comput. Meth. Eng., 23, 1-15. https://doi.org/10.1007/s11831-014-9135-7.
  3. Araujo dos Santos, J., Katunin, A. and Lopes, H. (2019), "Vibration-based damage identification using wavelet transform and a numerical model of shearography", Int. J. Struct. Stab. Dyn., 19(04), 1950038. https://doi.org/10.1142/S021945541950038X.
  4. Asgarian, B., Aghaeidoost, V., Shokrgozar, H.R. (2016), "Damage detection of jacket type offshore platforms using rate of signal energy using wavelet packet transform", Marine Struct., 45, 1-21. https://doi.org/10.1016/j.marstruc.2015.10.003.
  5. Aval, S.B.B. and Mohebian, P. (2021), "A novel optimization algorithm based on modal force information for structural damage identification", Int. J. Struct. Stab. Dyn., 21(07), 2150100. https://doi.org/10.1142/S0219455421501005.
  6. Ding, Z., Li, J. and Hao, H. (2019), "Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference", Mech. Sys. Signal Processing, 132, 211-231. https://doi.org/10.1016/j.ymssp.2019.06.029.
  7. Farahani, R.V. and Penumadu, D. (2016), "Full-scale bridge damage identification using time series analysis of a dense array of geophones excited by drop weight", Struct. Control Health Monit., 23(7), 982-997. https://doi.org/10.1002/stc.1820.
  8. Gao, R.X. and Yan, R. (2010), "Wavelets: Theory and applications for manufacturing", Springer Science & Business Media, New York, NY, USA.
  9. Garfamy, H.M., Abar, B.M. and D'Aniello, M. (2023), "Seismic response of CFST Double-Tee moment connections: Design criteria and experimental tests", Eng. Struct., 293, 116670. https://doi.org/10.1016/j.engstruct.2023.116670.
  10. Ghannadi, P. and Kourehli, S.S. (2019), "Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm", Struct. Eng. Mech., 70(6), 649-659. https://doi.org/10.12989/sem.2019.70.6.649.
  11. Goyal, D. and Pabla, B. (2016), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Archives Comput. Meth. Eng., 23, 585-594. https://doi.org/10.1007/s11831-015-9145-0.
  12. Han, J.-G., Ren, W.-X. and Sun, Z.-S. (2005), "Wavelet packet-based damage identification of beam structures", Int. J. Solids Struct., 42(26), 6610-6627. https://doi.org/10.1016/j.ijsolstr.2005.04.031.
  13. Hanteh, M. and Rezaifar, O. (2021), "Damage detection in precast full panel building by continuous wavelet analysis analytical method", Structures, 29, 701-713. https://doi.org/10.1016/j.istruc.2020.12.002.
  14. Hanteh, M., Rezaifar, O. and Gholhaki, M. (2021), "Selecting the appropriate wavelet function in the damage detection of precast full panel building based on experimental results and wavelet analysis", J. Civil Struct. Health Monit., 11(4), 1013-1036. https://doi.org/10.1007/s13349-021-00497-6.
  15. Hong, J.-C., Kim, Y., Lee, H. and Lee, Y. (2002), "Damage detection using the Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of a beam", Int. J. Solids Struct., 39(7), 1803-1816. https://doi.org/10.1016/S0020-7683(01)00279-7.
  16. Kabir, M.Z. and Rezaifar, O. (2019), "Shaking table examination on dynamic characteristics of a scaled down 4-story building constructed with 3D-panel system", Structures, 20, 411-424. https://doi.org/10.1016/j.istruc.2019.05.006.
  17. Katunin, A. (2015), "Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis", Archives Civil Mech. Eng., 15(1), 251-261. https://doi.org/10.1016/j.acme.2014.01.010.
  18. Khanahmadi, M. (2024), "An effective vibration-based feature extraction method for single and multiple damage localization in thin-walled plates using one-dimensional wavelet transform: A numerical and experimental study", Thin-Wall. Struct., 204, 112288. https://doi.org/10.1016/j.tws.2024.112288.
  19. Khanahmadi, M. and Khalighi, M. (2024), "Interfacial debonding detection in concrete-filled steel tubular (CFST) columns with modal curvature-based irregularity detection indices", Int. J. Struct. Stab. Dyn., 24(13), 2450148. https://doi.org/10.1142/S0219455424501487.
  20. Khanahmadi, M., Gholhaki, M., Rezaifar, O. and Dezhkam, B. (2023), "Signal processing methodology for detection and localization of damages in columns under the effect of axial load", Measurement, 211, 112595. https://doi.org/10.1016/j.measurement.2023.112595.
  21. Khanahmadi, M., Mirzaei, B., Dezhkam, B., Rezaifar, O., Gholhaki, M. and Amiri, G.G. (2024), "Vibration-based health monitoring and damage detection in beam-like structures with innovative approaches based on signal processing: A numerical and experimental study", Structures, 68, 107211. https://doi.org/10.1016/j.istruc.2024.107211.
  22. Kopsaftopoulos, F.P. and Fassois, S.D. (2010), "Vibration based health monitoring for a lightweight truss structure: experimental assessment of several statistical time series methods", Mech. Syst. Signal Processing, 24(7), 1977-1997. https://doi.org/10.1016/j.ymssp.2010.05.013.
  23. Lee, S.G., Yun, G.J. and Shang, S. (2014), "Reference-free damage detection for truss bridge structures by continuous relative wavelet entropy method", Struct. Health Monitoring, 13(3), 307-320. https://doi.org/10.1177/1475921714522845.
  24. Li, J. and Hao, H., (2014), "Substructure damage identification based on wavelet-domain response reconstruction", Struct. Health Monit., 13(4), 389-405. https://doi.org/10.1177/1475921714532991.
  25. Ma, Q., Solis, M. and Galvin, P. (2021), "Wavelet analysis of static deflections for multiple damage identification in beams", Mech. Syst. Signal Processing, 147, 107103. https://doi.org/10.1016/j.ymssp.2020.107103.
  26. Mallat, S. (1999), "A wavelet tour of signal processing", Stanford University, USA.
  27. Mamazizi, A., Khanahmadi, M. and Nobakht Vakili, K. (2022), "Debonding damage detection and assessment in a CFST composite column using modal dynamic data", Sharif J. Civil Eng., 38(3.1), 53-63. https://doi.org/10.24200/J30.2022.59903.3075.
  28. Mirzaei, B., Nasrollahi, K., Yousefbeik, S., Ghodrati Amiri, G. and Zare Hosseinzadeh, A. (2019), "A two-step method for damage identification and quantification in large trusses via wavelet transform and optimization algorithm", J. Rehab. Civil Eng., 7(1), 1-20. https://doi.org/10.22075/JRCE.2017.11678.1197.
  29. Naderpour, H. and Fakharian, P. (2016), "A synthesis of peak picking method and wavelet packet transform for structural modal identification", KSCE J. Civil Eng., 20, 2859-2867. https://doi.org/10.1007/s12205-016-0523-4.
  30. Noori, M., Wang, H., Altabey, W.A. and Silik, A.I. (2018), "A modified wavelet energy rate-based damage identification method for steel bridges", Scientia Iranica, 25, 3210-3230. https://doi.org/10.24200/SCI.2018.20736.
  31. Pachideh, G. and Gholhaki, M. (2020), "Evaluation of concrete filled steel tube column confined with FRP", J. Testing Evaluation, 48, 4343-4354. https://doi.org/10.1520/JTE20180148.
  32. Pachideh, G., Gholhaki, M., Moshtagh, A. (2021), "An experimental study on cyclic performance of the geometrically prismatic concrete-filled double skin steel tubular (CFDST) columns", Iran. J. Sci. Technol. Transact. Civil Eng., 45, 629-638. https://doi.org/10.1007/s40996-020-00410-z.
  33. Qiao, L., Esmaeily, A. and Melhem, H.G. (2012), "Signal pattern recognition for damage diagnosis in structures", Comput. Aided Civil Infrastruct. Eng., 27(9), 699-710. https://doi.org/10.1111/j.1467-8667.2012.00766.x.
  34. Rahami, H., Tehrani, H.A., Akhavat, M. and Amiri, G.G. (2016), "Damage detection in offshore fixed platforms using concepts of energy entropy in wavelet packet transform", Amirkabir J. Civil Eng., 48(3), 241-248. https://doi.org/10.22060/CEEJ.2016.597.
  35. Rezaifar, O. and Younesi, A. (2016), "Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns", Steel Compos. Struct., 21(1), 73-91. https://doi.org/10.12989/scs.2016.21.1.073.
  36. Rezaifar, O. and Younesi, A. (2017), "Experimental study discussion of the seismic behavior on new types of internal/external stiffeners in rigid beam-to-CFST/HSS column connections", Construct. Build. Mater., 136, 574-589. https://doi.org/10.1016/j.conbuildmat.2017.01.032.
  37. Rezaifar, O., Kabir, M.Z., Taribakhsh, M. and Tehranian, A. (2008), "Dynamic behaviour of 3D-panel single-storey system using shaking table testing", Eng. Struct., 30(2), 318-337. https://doi.org/10.1016/j.engstruct.2007.03.019.
  38. Roveri, N. and Carcaterra, A. (2012), "Damage detection in structures under traveling loads by Hilbert-Huang transform", Mech. Syst. Signal Processing, 28, 128-144. https://doi.org/10.1016/j.ymssp.2011.06.018.
  39. Sun, G., Wang, Y., Luo, Q. and Li, Q. (2022), "Vibration-based damage identification in composite plates using 3D-DIC and wavelet analysis", Mech. Syst. Signal Processing, 173, 108890. https://doi.org/10.1016/j.ymssp.2022.108890.
  40. Talebsafa, P., Rezaifar, O. and Naderpour, H. (2023), "Dynamic parameters identification of 3D sandwich wall panels from phase-based video measurement via smartphones camera", Eng. Struct., 293, 116653. https://doi.org/10.1016/j.engstruct.2023.116653.
  41. Vafaei, M. and Adnan, A.B., (2014), "Seismic damage detection of tall airport traffic control towers using wavelet analysis", Struct. Infrastruct. Eng., 10(1), 106-127. https://doi.org/10.1080/15732479.2012.704051.
  42. Wang, P. and Shi, Q. (2018), "Damage identification in structures based on energy curvature difference of wavelet packet transform", Shock Vib., 2018. https://doi.org/10.1155/2018/4830391.
  43. Wang, S., Li, J., Luo, H. and Zhu, H. (2019), "Damage identification in underground tunnel structures with wavelet based residual force vector", Eng. Struct., 178, 506-520. https://doi.org/10.1016/j.engstruct.2018.10.021.
  44. Xu, B., Chen, H. and Xia, S. (2017b), "Numerical study on the mechanism of active interfacial debonding detection for rectangular CFSTs based on wavelet packet analysis with piezoceramics", Mech. Syst. Signal Processing, 86, 108-121. https://doi.org/10.1016/j.ymssp.2016.10.002.
  45. Xu, B., Chen, H., Mo, Y.-L. and Chen, X. (2017a), "Multi-physical field guided wave simulation for circular concrete-filled steel tubes coupled with piezoelectric patches considering debonding defects", Int. J. Solids Struct., 122, 25-32. https://doi.org/10.1016/j.ijsolstr.2017.05.040.
  46. Xu, B., Chen, H., Mo, Y.-L. and Zhou, T. (2018), "Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation", Mech. Syst. Signal Processing, 107, 515-528. https://doi.org/10.1016/j.ymssp.2018.01.041.
  47. Xu, B., Li, B. and Song, G. (2013a), "Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics", J. Struct. Eng., 139(9), 1435-1443. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000632.
  48. Xu, B., Zhang, T., Song, G. and Gu, H. (2013b), "Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis", Mech. Syst. Signal Processing, 36(1), 7-17. https://doi.org/10.1016/j.ymssp.2011.07.029.
  49. Xu, W., Radzienski, M., Ostachowicz, W. and Cao, M. (2013c), "Damage detection in plates using two-dimensional directional Gaussian wavelets and laser scanned operating deflection shapes", Struct. Health Monit., 12(5-6), 457-468. https://doi.org/10.1177/1475921713492365.
  50. Yang, C. and Oyadiji, S.O. (2017), "Delamination detection in composite laminate plates using 2D wavelet analysis of modal frequency surface", Comput. Struct., 179, 109-126. https://doi.org/10.1016/j.compstruc.2016.10.019.
  51. Younesi, A., Rezaifar, O., Gholhaki, M. and Esfandiari, A. (2019), "Structural health monitoring of a concrete-filled tube column", Mag. Civil Eng., 85(1), 136-145. https://doi.org/10.18720/MCE.85.11.
  52. Younesi, A., Rezaifar, O., Gholhaki, M. and Esfandiari, A. (2021), "Active interface debonding detection of a concrete filled tube (CFT) column by modal parameters and continuous wavelet transform (CWT) technique", Struct. Monit. Maintenance, 8(1), 69-90. https://doi.org/10.12989/smm.2021.8.1.069.
  53. Zhong, S. and Oyadiji, S.O. (2011), "Crack detection in simply supported beams using stationary wavelet transform of modal data", Struct. Control Health Monit., 18(2), 169-190. https://doi.org/10.1002/stc.366.
  54. Zhu, X., Cao, M., Ostachowicz, W. and Xu, W. (2019), "Damage identification in bridges by processing dynamic responses to moving loads: features and evaluation", Sensors, 19(3), 463. https://doi.org/10.3390/s19030463.