참고문헌
- Abd-alla, A.E.N., Giorgio, I., Galantucci, L., Hamdan, A.M. and Vescovo, D.D. (2016), "Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity", Continuum. Mech. Thermodyn., 28, 67-84. https://doi.org/10.1007/s00161-014-0400-7.
- Alihemmati, J. and Beni, Y.T. (2022a), "Generalized thermoelasticity of microstructures: Lord-Shulman theory with modified strain gradient theory", Mech. Mater., 172, 104412. https://doi.org/10.1016/j.mechmat.2022.104412.
- Alihemmati, J. and Beni, Y.T. (2022b), "Size dependent generalized thermoelasticity: Green-Lindsay theory with modified strain gradient theory", Wave. Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2022.2105985.
- Alihemmati, J., Beni, Y.T. and Kiani, Y. (2021), "LS-based and GL-based thermoelasticity in two dimensional bounded media: A Chebyshev collocation analysis", J. Therm. Stress., 44(7), 883-898. https://doi.org/10.1080/01495739.2021.1922112.
- Alihemmati, J., Tadi Beni, Y. and Kiani, Y. (2021), "Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain", J. Therm. Stress., 44(5), 547-565. https://doi.org/10.1080/01495739.2020.1867941.
- Arefi, M. and Khoshgoftar, M.J. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart Struct. Syst., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225.
- Avdiaj, S., Setina, J. and Syla, N. (2009), "Modeling of the piezoelectric effect using the finite-element method (FEM)", Materials and Technologies, 49, 283.
- Bagri, A., Taheri, H., Eslami, M.R. and Fariborz, S. (2006), "Generalized coupled thermoelasticity of a layer", J. Therm. Stress., 29(4), 359-370. https://doi.org/10.1080/01495730500360492.
- Baksi, A., Roy, B.K. and Bera, R.K. (2007), "Effect of generalized thermoelasticity materials with memory", Struct. Eng. Mech., 25(5), 597-611. https://doi.org/10.12989/sem.2007.25.5.597.
- Dell'Isola, F., Guarascio, M. and Hutter, K. (2000), "A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle", Arch. Appl. Mech., 70, 323-337. https://doi.org/10.1007/s004199900020.
- Ebrahimi, F., Hosseini, S.H.S. and Singhal, A. (2020), "A comprehensive review on the modeling of smart piezoelectric nanostructures", Struct. Eng. Mech., 74(5), 611-633. https://doi.org/10.12989/sem.2020.74.5.611.
- Giorgio, I. (2022), "A variational formulation for one-dimensional linear thermoviscoelasticity", Math. Mech. Complex Syst., 9, 397-412. https://doi.org/10.2140/memocs.2021.9.397.
- Giorgio, I. and Placidi, L. (2024), "A variational formulation for three-dimensional linear thermoelasticity with thermal inertia", Meccanica, 1-12. https://doi.org/10.1007/s11012-024-01796-0.
- He, T., Tian, X. and Shen, Y.P. (2002), "State space approach to one-dimensional thermal shock problem for a semi-infinite piezoelectric rod", Int. J. Eng. Sci., 40, 1081-1097. https://doi.org/10.1016/S0020-7225 (02)00005-8.
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Pringer Science & Business Media, Berlin.
- Hosseini, S.A., Abolbashari, M.H. and Hosseini, S.M. (2016), "Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method", Struct. Eng. Mech., 60(3), 529-545. https://doi.org/10.12989/sem.2016.60.3.529.
- Karami, B. and Shahsavari, B. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215.
- Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
- Kheibari, F., Beni, Y.T. and Golestanian, H. (2024), "On the generalized flexothermoelasticity of a microlayer", Acta Mechanica, 235, 3363-3384. https://doi.org/10.1007/s00707-024-03884-4.
- Lasova, Z. and Zemcik, R. (2012), "Comparison of finite element models for piezoelectric materials", Procedia Eng., 48, 375-380. https://doi.org/10.1016/j.proeng.2012.09.528.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Pakdaman, M. and Tadi Beni, Y. (2024), "Size-dependent generalized piezothermoelasticity of microlayer", J. Appl. Comput. Mech., https://doi.org/10.22055/jacm.2024.46393.4510.
- Rao, S.S. (2016), Mechanical Vibrations, Prentice Hall, Miami.
- Segerlind, L.J. (1991), Applied Finite Element Analysis, Wiley, New York.
- Shakeriaski, F., Ghodrat, M., Dias, J.E. and Behnia, M. (2021), "Recent advances in generalized thermoelasticity theory and the modified models", J. Comput. Des. Eng., 8(1), 15-35. https://doi.org/10.1093/jcde/qwaa082.
- Singh, B. and Bijarnia, R. (2021), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473.
- Taghizadeh, A. and Kiani, Y. (2019), "Generalized thermoelasticity of a piezoelectric layer", J. Therm. Stress., 42(7), 863-873. https://doi.org/10.1080/01495739.2019.1593905.
- Tian, X., Zhang, J., Shen, Y. and Lu, T.J. (2007), "Finite element method for generalized piezothermoelastic problems", Int. J. Solid. Struct., 44(18-19), 6330-6339. https://doi.org/10.1016/j.ijsolstr.2007.02.035.
- Tianhu, H., Xiaogeng, T. and Yapeng, S. (2002), "Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent", Int. J. Eng. Sci., 40, 2249-2264. https://doi.org/10.1016/S0020-7225(02)00137-4.
- Verma, K. (2002), "On the propagation of waves in layered anisotropic media in generalized thermoelasticity", Int. J. Eng. Sci., 40(18), 2077-2096. https://doi.org/10.1016/S0020-7225(02)00030-7.
- Xiaogeng, T., Jie, Z. and Yapeng, S. (2006), "Solving generalized piezothermoelastic problem by FEM with different theories", Acta Mechanica Sinica-Chin. Ed., 38(4), 553.
- Youssef, H.M. and El-Bary, A.A. (2009), "Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories-state space approach", J. Therm. Stress., 32(12), 1293-1309. https://doi.org/10.1080/01495730903249276.