DOI QR코드

DOI QR Code

Seismic control of concrete rectangular tanks subjected to bi-directional excitation using base isolation, considering fluid-structure-soil interaction

  • Received : 2024.02.05
  • Accepted : 2024.08.26
  • Published : 2024.10.10

Abstract

In the current paper, the various responses of concrete rectangular liquid storage containers under seismic load, each isolated by a lead-rubber bearing subjected to bi-directional earthquake forces are investigated. A parametric study is conducted to investigate the effects of isolation period, yield strength of the isolator and the effects of soil-foundation interaction for non-isolated and base-isolated tanks located on different soil types. In most cases, the value of base shear, base moment, wall displacement and hydrodynamic pressure is reduced by the effect of the isolators whose effective frequency is within the appropriate range. The sloshing displacement is amplified due to seismic isolation of the tanks for both tall and shallow tank configurations. Also, it is found that the seismic isolation technique is more efficient for the more flexible tank. Studying various soil types indicates that, unlike the responses of non-isolated tanks which change drastically for different soil types, the responses of base-isolated structures are less affected. Finally, it is observed that the variation in structural responses is not only related to the superstructure configuration and bearings properties but also depends on the earthquake specifications.

Keywords

References

  1. ACI 350 (2006), Seismic Design of Liquid-Containing Concrete Structures and Commentary American Concrete Institute, Farmington Hills, MI. USA.
  2. Aghashiri, M.H. and Hashemi, S. (2015a), "Dynamic analysis of base-isolated flexible rectangular fluid tanks", 10th International Congress on Civil Engineering, Tabriz, Iran, May.
  3. Aghashiri, M.H. and Hashemi, S. (2015b), "Seismic analysis of concrete rectangular containers isolated by different isolation systems", 7th International Conference on Seismology and Earthquake Engineering, Tehran, Iran, May.
  4. ASCE (2013), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, VA, USA
  5. Bo, L. and Jia-xiang, T. (1994), "Vibration studies of base-isolated liquid storage tanks", Comput. Struct., 52(5), 1051-1059. https://doi.org/10.1016/0045-7949(94)90089-2.
  6. Chen, J.Z. and Kianoush, M.R. (2009), "Generalized SDOF system for seismic analysis of concrete rectangular liquid storage tanks", Eng. Struct., 31(10), 2426-2435. http://doi.org/10.1016/j.engstruct.2009.05.019.
  7. De Domenico, D Impollonia, N. and Ricciardi, G. (2018a), "Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023.
  8. De Domenico, D. and Ricciardi, G. (2018), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Soil Dyn. Earthq. Eng., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011.
  9. De Domenico, D., Ricciardi, G. and Benzoni, G. (2018b), "Analytical and finite element investigation on the thermomechanical coupled response of friction isolators under bidirectional excitation", Soil Dyn. Earthq. Eng., 106, 131-147. https://doi.org/10.1016/j.soildyn.2017.12.019.
  10. Dogangun, A. and Livaoglu, R. (2004), "Hydrodynamic pressures acting on the walls of rectangular fluid containers", Struct. Eng. Mech., 17(2), 203-214. http://doi.org/10.12989/sem.2004.17.2.203.
  11. Dogangun, A., Durmus, A. and Ayvaz, Y. (1996), "Static and dynamic analysis of rectangular tanks by using the lagrangian fluid finite element", Comput. Struct., 59(3), 547-552. https://doi.org/10.1016/0045-7949(95)00279-0.
  12. Eurocode-8 (2006), Design of Structures for Earthquake Resistance-Part 4: Silos, Tanks and Pipelines, European Committee, Standardization.
  13. Ghateh, R., Kianoush, M.R. and Pogorzelski, W. (2015), "Seismic response factors of reinforced concrete pedestal in elevated water tanks", Eng. Struct., 87, 32-46. https://doi.org/10.1016/j.engstruct.2015.01.017.
  14. Goudarzi, M.A. and Alimohammadi, S. (2010), "Numerical assessment of seismic safety of liquid storage tanks and performance of base isolation system", Struct. Eng. Mech., 35(6), 759-772. https://doi.org/10.12989/sem.2010.35.6.759.
  15. Haroun, M.A. (1984), "Stress analysis of rectangular walls under seismically induced hydrodynamic loads", Bull. Seismol. Soc. Am., 74(3), 1031-1041. https://doi.org/10.1785/BSSA0740031031.
  16. Hashemi, S. and Aghashiri, M.H. (2017), "Seismic responses of base-isolated flexible rectangular fluid containers under horizontal ground motion", Soil Dyn. Earthq. Eng., 100, 159-168. http://doi.org/10.1016/j.soildyn.2017.05.010.
  17. Hashemi, S., Aghashiri, M.H. and Kianoush, M.R. (2017), "Seismic behavior of concrete rectangular containers isolated by different isolation systems subjected to bi-directional excitation", 16th World Conference on Earthquake Engineering., Santiago, Chile, January.
  18. Hashemi, S., Aghashiri, M.H., Ehteshami, A. and Kianoush, R. (2024), "Seismic isolation effects on elevated and ground-supported flexible concrete cylindrical tanks under bidirectional excitation using an advanced mechanical model", J. Earthq. Tsun, 18(03), 159-168. https://doi.org/10.1142/S1793431124500027.
  19. Hashemi, S., Kianoush, R. and Khoubani, M. (2022), "A mechanical model for soil-rectangular tank interaction effects under seismic loading", Soil Dyn. Earthq. Eng., 153, 1-20. https://doi.org/10.1016/j.soildyn.2021.107092.
  20. Hashemi, S., Saadatpour, M.M. and Kianoush, M.R. (2013a), "Dynamic behavior of flexible rectangular fluid containers", Thin Wall. Struct., 66, 23-38. http://doi.org/10.1016/j.tws.2013.02.001.
  21. Hashemi, S., Saadatpour, M.M. and Kianoush, M.R. (2013b), "Dynamic analysis of flexible rectangular fluid containers subjected to horizontal ground motion", Earthq. Eng. Struct. Dyn., 42(11), 1637-1656. http://doi.org/10.1002/eqe.2291.
  22. Hoskins, L.M. and Jacobsen, L.S. (1934), "Water pressure in a tank caused by simulated earthquake", Bull. Seismol. Soc. Am., 24(1), 1-32. https://doi.org/10.1785/BSSA0240010001.
  23. Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Am., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381.
  24. Housner, G.W. (1957), "Dynamic pressure on accelerated fluid containers", Bull. Seismol. Soc. Am., 47(1), 15-35. https://doi.org/10.1785/BSSA0470010015.
  25. Jiang, Y.Y., Zhao, Z.P., Zhang, R.F., De Domenico, D. and Pan, C. (2020), "Optimal design based on analytical solution for storage tank with inerter isolation system", Soil Dyn. Earthq. Eng., 129, 105924. https://doi.org/10.1016/j.soildyn.2019.105924.
  26. Kianoush, M.R. and Ghaemmaghami, A.R. (2011), "The effect of earthquake frequency content of the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction", Eng. Struct., 33(7), 2186-2200. https://doi.org/10.1016/j.engstruct.2011.03.009.
  27. Kim, J.K., Koh, H.M. and Kwahk, I.J. (1996), "Dynamic response of rectangular flexible fluid containers", J. Eng. Mech., 122(9), 807-817. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(807).
  28. Kim, N.S. and Lee, D.G. (1995), "Pseudo dynamic test for evaluation of seismic performance of base-isolated liquid storage tanks", Eng. Struct., 17(3), 198-208. https://doi.org/10.1016/0141-0296(95)00076-J.
  29. Koh, H.M., Kim, J.K. and Park, J.H. (1998), "Fluid-structural interaction analysis of 3D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results", Earthq. Eng. Struct. Dyn., 27(2), 109-124. https://doi.org/10.1002/(SICI)1096-9845(199802)27:2<109::AID-EQE714>3.0.CO;2-M.
  30. Kumar, H. and Saha, S.K. (2021), "Effects of soil-structure interaction on seismic response of fixed base and base isolated liquid storage tanks", J. Earthq. Eng., 26(12), 6148-6171. https://doi.org/10.1080/13632469.2021.1911887.
  31. Luo, H., Zhang, R. and Weng, D. (2016), "Mitigation of liquid sloshing in storage tanks by using a hybrid control method", Soil Dyn. Earthq. Eng., 90, 183-195. https://doi.org/10.1016/j.soildyn.2016.08.037.
  32. Malhotra, P.K. (1997), "New methods for seismic isolation of liquid storage tanks", Earthq. Eng. Struct. Dyn., 26(8), 839-847. https://doi.org/10.1002/(SICI)1096-9845(199708)26:8<839::AID-EQE679>3.0.CO;2-Y.
  33. Mokha, A.S., Constantinon, M.C. and Reinhorn, A.M. (1993), "Verification of friction model of Teflon bearings under triaxial load", J. Struct. Eng., 119(1), 240-261. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(240).
  34. Moradi, R., Behnamfar, F. and Hashemi, S. (2018), "Mechanical model for cylindrical flexible concrete tanks undergoing lateral excitation", Soil Dyn. Earthq. Eng., 106, 148-162. https://doi.org/10.1016/j.soildyn.2017.12.008.
  35. Mori, C., Sorace, S. and Terenzi, G. (2015), "Seismic assessment and retrofit of two heritage-listed R/C elevated water storage tanks", Soil Dyn. Earthq. Eng, 77, 123-136. https://doi.org/10.1016/j.soildyn.2015.05.007.
  36. Moslemi, M. and Kianoush, M.R. (2012), "Parametric study on dynamic behavior of cylindrical ground-supported tanks", Eng. Struct, 42, 214-230. https://doi.org/10.1016/j.engstruct.2012.04.026.
  37. Moslemi, M. and Kianoush, M.R. (2016), "Application of seismic isolation technique to partially filled conical elevated tanks", Eng. Struct., 127, 663-675. https://doi.org/10.1016/j.engstruct.2016.09.009.
  38. Moslemi, M., Kianoush, M.R. and Pogorzelski, W. (2011), "Seismic response of liquid-filled elevated tanks", Eng. Struct., 33(6), 2074-2084. https://doi.org/10.1016/j.engstruct.2011.02.048.
  39. Mosqueda, G., Whittaker, A.S. and Fenves, G.L. (2004), "Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation", J. Struct. Eng., 130(3), 433-42. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(433).
  40. Naeim, F. (2001), The Seismic Design Handbook, Springer, New York, NY, USA.
  41. Nayak, S.K. and Biswal, K.C. (2013), "Quantification of nonlinear seismic response of rectangular liquid tank", Struct. Eng. Mech., 47(5), 599-622. https://doi.org/10.12989/sem.2013.47.5.599.
  42. Paolacci, F. (2015), "On the effectiveness two isolation systems for the seismic protection of elevated tanks", J. Press. Ves. Tech., 137(3), 1-8. https://doi.org/10.1115/1.4029590.
  43. Park, K.S., Koh, H.M. and Kim, J.K. (2000), "Seismic isolation of pool-type tanks for the storage of nuclear spent fuel assemblies", Nucl. Eng. Des., 199(1-2), 143-154. https://doi.org/10.1016/S0029-5493(99)00064-3.
  44. Park, Y.J., Wen, Y.K. and Ang, A.H. (1986), Random vibration of hysteretic systems under bi-directional ground motions", Earthq. Eng. Struct. Dyn., 14(4), 543-557. https://doi.org/10.1002/eqe.4290140405.
  45. Rabiei, M. and Khoshnoudian, F. (2012), "Seismic response of elevated liquid storage tanks using double concave friction pendulum bearings with Tri-linear behavior", Adv. Struct. Eng., 16(2), 315-337. https://doi.org/10.1260/1369-4332.16.2.315.
  46. Rai, D.C. (2002), "Seismic retrofitting of R/C shaft support of elevated tanks", Earthq. Spectra, 18(4), 745-760. https://doi.org/10.1193/1.1516753.
  47. Rai, D.C., Narayan. J.P., Pankaj and Kumar, A. (1997), "Jabalpur earthquake of May 22, 1997", Reconnaissance Report, Department of Earthquake Engineering, University of Roorkee, India.
  48. Robinson, W.H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquake", Earthq. Eng. Struct. Dyn., 10(4), 593-604. https://doi.org/10.1002/eqe.4290100408.
  49. Safari, S. and Tarinejad, R. (2016), "Parametric study of stochastic seismic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions", J. Vib. Control, 24(24), 5747-5764. https://doi.org/10.1177/1077546316647576.
  50. Sezen, H. and Whittaker, A.S. (2006), "Seismic performace of industrial facilities affected by the 1999 Turkey earthquake", J. Perform. Constr. Facil., 20(1), 28-36. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(28).
  51. Shekari, M.R. (2018), "A coupled BE-FE-BE study for investigating the effect of earthquake frequency content and predominant period on seismic behavior of base-isolated concrete rectangular liquid tanks", J. Fluid. Struct., 77, 19-35. https://doi.org/10.1016/j.jfluidstructs.2017.11.003.
  52. Shenton, H.W. and Hampton, F.P. (1999), "Seismic response of isolated elevated water tanks", J. Struct. Eng., 125(9), 965-976. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(965).
  53. Shrimali, M.K. and Jangid, R.S. (2002), "Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation", Nucl. Eng. Des., 217(1-2), 1-20. https://doi.org/10.1016/S0029-5493(02)00134-6.
  54. Wen, Y.K. (1976), "Method for random vibration of hysteretic system", J. Eng. Mech. Div., 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106.
  55. Wolf, J.P. and Deeks, A.J. (1994), Foundation Vibration Analysis using Simple Physical Models, Englewood Cliffs. Prentice-Hall.
  56. Zhang, R., Weng, D. and Ren, X. (2011), "Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system", Earthq. Eng. Vib., 10, 253-262. https://doi.org/10.1007/s11803-011-0063-3.
  57. Zhang, R.F., Zhao, Z.P. and Pan, C. (2018), "Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks", Soil Dyn. Earthq. Eng., 114, 639-649. https://doi.org/10.1016/j.soildyn.2018.07.036.
  58. Zhao, M. and Zhou, J. (2018), "Review of seismic studies of liquid storage tanks", Struct. Eng. Mech., 65(5), 557-572. https://doi.org/10.12989/sem.2018.65.5.557.