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ABSTRACT. In this article, we propose an efficient and accurate adaptive time-stepping nu-
merical method for the Black–Scholes (BS) equations. The numerical scheme used is the finite
difference method (FDM). The proposed adaptive time-stepping computational scheme is based
on the maximum norm of the discrete Laplacian values of option values on a discrete domain.
Most numerical solvers for the BS equations require a small time step when there are large vari-
ations in the solutions. To resolve this problem, we propose an adaptive time-stepping algorithm
that uses a small time step size when the maximum norm of the discrete Laplacian values on a
discrete domain is large; otherwise, a larger time step size is used to speed up the computation.
To demonstrate the high performance of the proposed adaptive time-stepping methodology,
we conduct several computational experiments. The numerical tests confirm that the proposed
adaptive time-stepping method improves both the efficiency and accuracy of computations for
the BS equations.

1. INTRODUCTION

We propose an efficient and accurate adaptive time-stepping numerical algorithm for the
Black–Scholes (BS) equations:

∂V (S, t)

∂t
= −1

2
(σS)2

∂2V (S, t)

∂S2
− rS

∂V (S, t)

∂S
+ rV (S, t), for S ≥ 0, t > 0, (1.1)
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where S is the value of the underlying index, t is time, σ is a constant volatility of the underly-
ing index, r > 0 is a constant risk-free interest rate, and V (S, t) is the option value at V (S, t).
The terminal condition is the payoff function Λ(S) at the expiration time T :

V (S, T ) = Λ(S). (1.2)

Finding the analytical solutions of Eqs. (1.1) and (1.2) for complex options such as equity-
linked securities (ELS) is difficult. Therefore, using a numerical approximation is essential.
To estimate the option value, one can compute a solution to the BS Eqs. (1.1) and (1.2) using
the finite difference method [1, 2, 3], finite element method [4, 5, 6], finite volume method
[7, 8], or fast Fourier transform [9, 10, 11]. Solutions to the BS equations often show both
fast and slow time changes. For instance, the solution may change rapidly if the price of
the underlying asset changes rapidly, in which case a small time step size may be needed to
obtain an accurate solution. Conversely, if the change is slow, a larger time step size can be
used. An adaptive time-stepping scheme automatically detects these changes and dynamically
adjusts the time step size to increase computational efficiency [12]. A space-time adaptive finite
difference method was developed in [13]. In [14], to price American options under constant or
stochastic volatility assumptions, the authors considered adaptive time-stepping based on the
second order backward difference formula [16] with variable time step sizes. To accurately
and efficiently compute European cash-or-nothing call options and the Greeks near maturity,
an adaptive time-stepping numerical algorithm was proposed in [17].

In this study, we use the finite difference method (FDM). The proposed adaptive time-
stepping computational scheme relies on the maximum norm of discrete Laplacian values of
option prices within a discrete domain. Many numerical solvers for the BS equations necessi-
tate a small time step in the presence of significant solution variations. To resolve this issue,
we introduce an adaptive time-stepping method that uses a small time step when the maximum
norm of discrete Laplacian values is large within the discrete domain; otherwise, a larger time
step is used to accelerate the computation. The proposed adaptive time-stepping scheme, based
on discrete Laplacian values, is robust, efficient, simple, and accurate.

The main purpose of this paper is to develop an adaptive time-stepping computational scheme
using the maximum norm of discrete Laplacian values of option prices.

This paper is organized as follows. In Section 3, the proposed efficient and accurate adaptive
time-stepping numerical method for the BS equations is described. To demonstrate the high
performance of the proposed adaptive time-stepping methodology, we conduct several com-
putational experiments in Section 4. The numerical tests confirm that the proposed adaptive
time-stepping method significantly improves both the efficiency and accuracy of the computa-
tions for the BS equations. Finally, Section 5 presents the conclusions.

2. PREVIOUS ADAPTIVE TIME-STEPPING METHODS

Now, we review several previous adaptive time-stepping schemes. In a previous study [17],
with the fully implicit scheme employed for the time derivative, the numerical solution of Eq.
(3.2) exhibits first-order accuracy with respect to time. The adaptive time-stepping strategy [18]
was considered, where the time step is chosen based on criteria related to truncation error. To
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avoid excessively large or small time steps, the initial time step size ∆τ0 is set with maximum
and minimum time step sizes, ∆τmax and ∆τmin. For the time step scaled error defined as

Etr =
∥∥un+2 − vn+2

∥∥
2
,

if the error is smaller than the given tolerance, the numerical solution at (n+2)-th step is set to
un+2. Otherwise, the numerical solution is solved using time step ∆τ0/2. Here, un+2 and vn+2

are the numerical solutions obtained by using different time steps, ∆τ0 and 2∆τ0, respectively,
and the scaled error is checked again. In this method, the next time step size is automatically
determined by the given tolerance tol and the error Etr as ∆τnew = ∆τ0 × tol/Etr.

In [19], an adaptive time-stepping method was proposed with the constraint that the max-
imum allowable time step ∆tmax satisfies the boundedness of the numerical solutions. First,
given (n+1)-th numerical solution vn+1 and the adaptive time step τn, compute vn. For given
tolerance δ, if ∥vn − vn+1∥, then accept vn and take a new time step as

τn−1 = min

(
τn

δ

∥vn − vn+1∥
,∆tmax

)
.

Otherwise replace τn by τn/2.
Persson and Sydow [14] developed an adaptive space-time finite difference method for pric-

ing American options. The adaptive space is based on the Richardson extrapolation. The local
discretization error is estimated on a coarse grid using two different step sizes. The adaptive
time-stepping method is based on the work in [15]. The local time discretization with the
two-step backward differentiation formula (BDF2) method is estimated at each time step by
comparing the solution obtained with BDF2 to that obtained with an explicit scheme.

3. COMPUTATIONAL METHOD

Let us rewrite Eq. (1.1) as follows:

∂V (x, τ)

∂τ
=

1

2
(σx)2

∂2V (x, τ)

∂x2
+ rx

∂V (x, τ)

∂x
− rV (x, τ), for x ≥ 0, τ > 0, (3.1)

where x = S and τ = T − t. Then, the initial condition is given as V (x, 0) = Λ(x). We
discretize a numerical domain Ω = [0, L] as Ωh = {xi|xi = ih, for i = 0, . . . , Nx}, where
h = L/Nx, see Fig. 1 for a schematic illustration.

FIGURE 1. Discrete computational domain

Let V n
i = V (xi, τn), for 0 ≤ i ≤ Nx and 0 ≤ n ≤ Nt, where xi = ih and τn = n∆τ . We

discretize Eq. (3.1) as follows:

V n+1
i − V n

i

∆τ
=

σ2x2i
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i , (3.2)
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which can be rewritten as

aiV
n+1
i−1 + biV

n+1
i + ciV

n+1
i+1 = fi,

where ai =
rxi
2h

− σ2x2i
2h2

, bi =
1

∆τ
+

σ2x2i
h2

+ r, ci = −rxi
2h

− σ2x2i
2h2

, and fi =
V n
i

∆τ
. For the

boundary conditions, we use V n+1
0 = 0 and V n+1

Nx+1 = 2V n+1
Nx

− V n+1
Nx−1. Therefore, we have a

tridiagonal system as follows:
b1 c1 0 . . . 0
a2 b2 c2 . . . 0
...

. . . . . . . . .
...

0 . . . aNx−1 bNx−1 cNx−1

0 . . . 0 aNx − cNx bNx + 2cNx




V n+1
1

V n+1
2
...

V n+1
Nx−1

V n+1
Nx

 =


f1
f2
...

fNx−1

fNx

 .

Let V n = (V n
0 , V n

1 , . . . , V n
Nx

). Furthermore, we define the discrete Laplacian as follows:(
∂2V

∂x2

)n

i

=
V n
i−1 − 2V n

i + V n
i+1

h2
, for i = 1, . . . , Nx.

Subsequently, we define the maximum norm of the discrete Laplacian ∥∂2V n/∂x2∥∞ as the
following. ∥∥∥∥∂2V n

∂x2

∥∥∥∥
∞

= max
1≤i≤Nx

∣∣∣∣(∂2V

∂x2

)n

i

∣∣∣∣
Then, the proposed adaptive time-stepping method is described in the following algorithm:

Algorithm 1 An adaptive time-stepping method based on a discrete Laplace operator

Require: Set the initial condition V 0, the expiry time T , the maximum and minimum time
steps ∆τmax and ∆τmin, scaling factor s, time τ = 0, iteration number n = 0.

while τ < T do
Set ∆τ = max[∆τmin, τmax/(1 + s∥∂2V n/∂x2∥∞)].
if τ +∆τ > T then

Set ∆τ = T − τ .
end if
Solve Eq. (3.2) with the time step ∆τ and V n to obtain V n+1.
Set τ = τ +∆τ and n = n+ 1.

end while



92 H. HWANG, S. KWAK, Y. NAM, S. HAM, Z. LI, H. KIM, AND J. KIM

4. NUMERICAL TESTS

To demonstrate the high performance of the proposed adaptive time-stepping methodology,
several computational experiments are conducted. The primary purpose of these experiments is
to validate the efficiency and accuracy of the methodology under various payoff functions. The
computational results consistently show improved accuracy and computational efficiency com-
pared to traditional adaptive time-stepping methods. This improvement highlights the potential
of this adaptive time-stepping approach for solving complex problems more effectively.

4.1. Convergence tests. We compute a European call option, where the payoff function is
defined as follows:

V (x, 0) = max(x−K, 0).

We have analytic solutions for these options. For the European call option, it is well known
that the analytic solution of the BS equation is given by

V (x, τ) = xN(d1)−Ke−rτN(d2), ∀x ∈ [0, L], ∀τ ∈ [0, T ],

d1 =
ln (x/K) +

(
r + 1

2σ
2
)
τ

σ
√
τ

, d2 = d1 − σ
√
τ ,

where N(d) = 1√
2π

∫ d
−∞ exp

(
−x2

2

)
dx represents the cumulative distribution function of the

standard normal distribution. The convergence error is defined as:

∥err∥2 =

√√√√ 1

Nx

Nx∑
i=1

(V n
i − V (xi, n∆t))2.

We used the following parameters: S0 = 100, K = 100, L = 3S0, σ = 0.3, r = 0.02,
∆t = 2−20, T = 1. Table 1 lists the l2-norm of the error, ∥err∥2, and the convergence rates
in the spatial dimension. The computational results demonstrate that the numerical scheme is
second-order accurate with respect to the underlying asset.

TABLE 1. Errors and spatial convergence rates

Nx 15 30 60 120
∥err∥2 0.24486 0.05936 0.01474 0.00369

rate 2.04 2.01 2.00

The errors and convergence rates in the temporal dimension are listed in Table 2. Here,
Nx = 300 is used. The numerical results validate that the algorithm is first-order accurate with
respect to the temporal space due to the use of the fully implicit Euler scheme.

Moreover, according to the study by Linde et al., adaptive time-stepping using an explicit
predictor and the second-order accurate backward differentiation formula (BDF2) corrector
improves convergence by adjusting step sizes based on local error estimation [20].
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TABLE 2. Temporal convergence error and convergence rate

∆t 0.25 0.125 0.0625 0.0625
∥err∥2 0.13427 0.06993 0.03588 0.01835

rate 0.94 0.96 0.97

4.2. Temporal evolution of ∥∂2V n/∂x2∥∞ and 1/(1 + s∥∂2V n/∂x2∥∞). We consider a
European call option with the following parameters: T = 1, ∆τ = T/360, L = 300,
Nx = 100, r = 0.03, σ = 0.3, and K = 100. Figures 2(a) and (b) show the temporal
evolution of ∥∂2V n/∂x2∥∞ and 1/(1 + s∥∂2V n/∂x2∥∞), respectively. We can observe that
∥∂2V n/∂x2∥∞ is decreasing with respect to time; and 1/(1+s∥∂2V n/∂x2∥∞) are increasing
with respect to time and the scaling factor s.
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FIGURE 2. (a) and (b) represent the temporal evolution of ∥∂2V n/∂x2∥∞ and
1/(1 + s∥∂2V n/∂x2∥∞), respectively.

4.3. Numerical prices for different scaling factors and ∆τmax. We evaluate the European
call option with the parameters T = 1, L = 300, Nx = 1600, r = 0.03, σ = 0.3, and
K = 100. Figure 3 illustrates numerical prices at S0 = 100 for different scaling factors and
∆τmax. For ∆τmax, Figs. 3(a) and (b) are set ∆τmin = ∆τmax/2 and ∆τmin = ∆τmax/20,
respectively. From these results, we can confirm that the numerical solutions are more accurate
when the scaling factor s is larger.

5. CONCLUSIONS

In this study, we introduced an efficient and accurate adaptive time-stepping numerical
method for solving the BS equations. By using the FDM with an adaptive time-stepping strat-
egy based on the maximum norm of the discrete Laplacian values within a discrete domain, we
efficiently resolved the limitations of traditional numerical solvers, which require small time
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FIGURE 3. Numerical prices for different values of s and ∆τmax.

steps during periods of significant solution variations. Our adaptive approach dynamically ad-
justs the time step size, using smaller steps when the maximum norm of the discrete Laplacian
values is large and larger steps otherwise, and thereby optimizes computational efficiency.

The results from our computational experiments validate the effectiveness of the proposed
method. The adaptive time-stepping approach not only provides the accuracy of the solu-
tions but also significantly improves computational efficiency. These findings suggest that the
proposed methodology is a robust and reliable tool for numerically solving the BS equations
and provides substantial improvements over conventional fixed time-stepping methods. Future
work may explore the application of this adaptive strategy to other types of financial models
and extend its implementation to more complex, multi-dimensional problems.
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