DOI QR코드

DOI QR Code

A Design of Dynamic Braking Resistor for Stationary Mode of Azimuth Driving Equipment for Multi-Function Radar

다기능 레이다 방위각 구동 장치의 정지 모드를 위한 제동저항 설계

  • Byeol Han (Power Control Team, Hanwhasystems) ;
  • Woo-Seok Oh (Power Control Team, Hanwhasystems) ;
  • Myeong-Hwan Shin (Power Control Team, Hanwhasystems) ;
  • Yeongsu Bak (Dept. of Electrical Energy Engineering, Keimyung University)
  • 한별 ;
  • 오우석 ;
  • 신명환 ;
  • 박영수
  • Received : 2024.09.05
  • Accepted : 2024.09.24
  • Published : 2024.09.30

Abstract

In this paper, a design of dynamic braking resistor for stationary mode of azimuth driving equipment (ADE) for multi-function radar (MFR) is presented. The ADE carries out missions which is the rotation mode for all directions and the stationary mode for tracing a subject with standstill. The ADE has to transfer the operation mode in demand time from rotation mode to stationary mode for precise target tracing. During the transition with deceleration, it may cause the fault of input power device due to back-electromotive force (back-EMF) of PMSM with generator mode. To protect the power device, a design of dynamic braking resistor is essential for consuming back-EMF. This paper presents the development of dynamic braking resistor for consuming back-EMF of ADE with deceleration mode. The validity and effect of the design is verified using simulation results.

본 논문에서는 다기능 레이다(multi-function radar, MFR) 방위각 구동 장치(azimuth driving equipment, ADE)의 정지 모드를 위한 제동저항 설계를 제안한다. ADE는 중거리의 지대공 유도미사일과 유인 전투기 감시정찰 임무를 수행하며, 360도 전방향을 회전하는 회전 모드와 정지된 상태에서 피사체를 추적하는 정지 모드가 있다. 또한, ADE는 정밀 추적을 위해 규격시간 내에 회전 모드에서 정지 모드로 전환해야 한다. 하지만, 감속 시 발전기로 동작하는 영구자석 동기전동기(permanent magnet synchronous motor, PMSM)에 의해 입력 전원이 소손될 우려가 있으며, 이를 보호하기 위해 PMSM의 역기전력을 소모하는 제동저항 설계가 필요하다. 본 논문에서는 방위각 구동 장치를 구성하는 PMSM의 감속에 의해 발생하는 역기전력을 소모하는 제동저항 설계 방안을 제안한다. 시뮬레이션 결과를 통해 제안하는 설계 방안 및 효과에 대한 타당성을 입증한다.

Keywords

References

  1. D.-H. Lee, S.-I. Jang, and D.-S. Shin, "Active Power Factor Correction Method for Multi-function Radar Power Supply on Surface Ships," Journal of the Korea Academia-Industrial cooperation Society, vol.25, no.2, pp.588-598, 2024. DOI: 10.5762/KAIS.2024.25.2.588
  2. S. Lee and N. M. Kim, "Search Operation Method for Multi-Search Areas of Multi-Function Radar," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol.33, no.1, pp.52-57, 2022. DOI: 10.5515/KJKIEES.2022.33.1.52
  3. B. Han, Y. Chang, and S. Lee, "A Control Strategy of Auto-Leveling Equipment of Multi-Function Radar for Vehicle based on Embedded System Modeling," Journal of The Korea Society of Computer and Information, vol.28, no.9, pp.1-8, 2023. DOI: 10.9708/jksci.2023.28.09.000
  4. Defense and Technology, "Medium-range surface-to-air guided weapon system 'Chungong-II' exports to UAE", https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11027957
  5. Defense and Technology, "HanwhaSystems exports 'Cheon-Gung-II Multi-Function Radar' to Saudi Arabia", https://dbpia.co.kr/pdf/pdfView.do?nodeId=NODE11863546
  6. Y.-K. Kwag, Radar System Engineering, Gyomoon, 2020. ISBN: 978-89-3632-090-4
  7. T. Ha and J. Park, "Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope," Journal of the KIMST, vol.23, no.5, pp.502-515, 2020. DOI: 10.9766/kimst.2020.23.5.502
  8. B. Han, J.-S. Lee, Y. Bak, and K.-B. Lee, "Six-step operation strategy for direct self-control method of interior permanent magnet synchronous motors based on torque angle," Journal of Power Electronics, vol.21, no.9, pp.1352-1364, 2021. DOI: 10.1007/s43236-021-00281-1
  9. K.-B. Lee, Advanced power electronics, munundang, 2019. ISBN: 979-11-5692-402-9.
  10. Y. Bak, "Hardware Simulator of DC-AC Inverters for Electric Compressors," Journal of Power Electronics, vol.24, no.6, pp.906-912, 2024. DOI: 10.1007/s43236-024-00816-2
  11. B. Xu, C. Gao, J. Zhang, J. Yang, B. Xia, and Z. He, "A Novel DC Chopper Topology for VSC-based Offshore Wind Farm Connection," IEEE Transactions on Power Electronics, vol.36, no.3, pp.3017-3027, 2021. DOI: 10.1109/TPEL.2020.3015979
  12. M. M. Skwarski, S. Robak, M. R. Piekarz, and M. M. Polewaczyk, "Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement," IEEE Access, vol.9, pp.69127-69138, 2021. DOI: 10.1109/ACCESS.2021.3077333
  13. S. H. Kwon, T. J. Park, and C. S. Chung, "Optimal Regeneration Algorithm for Electric Vehicle," Proceedings of the KIEE Conf., 2006, pp.1105-1106.
  14. H.-J. Park, H.-J. Lee, S.-G. Oh, and B.-J. Min, "Comparison of Control Performance by Braking Resistor in Electro-mechanical Actuator for Thrust Vector Control," Proceedings of the KSAS Conf., 2017. pp.1150-1151.
  15. B.-I. Yang, S.-H. Song, and D.-J. Lim, "Design of Small Wind Power System DC Voltage Controller for Over-Voltage Protection through Dynamic Brake Resistor at Over Wind Speed Condition," Proceedings of the KIPE Conf., 2017. pp.91-92.
  16. C.-M. Yun, H. Kim, H. Kim, M. Kim, and H. Jung, "A Characteristic Analysis of Power Quality on Railway Distribution Power Network Connection with Regenerative Inverter in DC Railway System," The Transactions of the Korean Institute of Electrical Engineers, vol.72, no.9, pp.1107-112, 2023. DOI: 10.5370/KIEE.2023.72.9.1107