DOI QR코드

DOI QR Code

시간 할당 방식의 양 3차회선 스케일러 하드웨어 구현

Hardware Implementation of Bicubic Scaler of Time Allocation Method

  • 정세민 ;
  • 한시연 ;
  • 응오닷 ;
  • 강봉순
  • Semin Jung (Dept. of Electronics Engineering, Dong-A University) ;
  • Si-Yeon Han (Dept. of Electronics Engineering, Dong-A University) ;
  • Dat Ngo (Dept. of Computer Engineering, Korea National University of Transportation) ;
  • Bongsoon Kang (Dept. of Electronics Engineering, Dong-A University)
  • 투고 : 2024.08.16
  • 심사 : 2024.09.09
  • 발행 : 2024.09.30

초록

멀티미디어 산업의 발전으로 다양한 해상도의 이미지를 사용하는 디지털 기기가 등장하고 있다. 따라서 동일한 입력 이미지라도 사용되는 디지털 기기에 따라 해상도를 변환하는 과정이 필요하며, 이와 같은 과정에서 입력 이미지의 일관된 품질을 유지하는 것이 중요하다. 본 논문에서는 보간 알고리즘을 이용해 이미지 스케일링을 진행하는 하드웨어를 구현한다. 사용되는 보간 알고리즘은 대표적인 3가지 방식 중 가장 높은 품질의 이미지를 생성하는 양 3차회선 보간 알고리즘을 사용한다. 이때 이미지에서 보간되는 각 축은 독립적으로 동작해 원하는 비율로 비대칭 확대 및 축소가 가능하다. 제안하는 스케일러의 하드웨어는 실시간 처리를 만족하며, 시간 할당 방식을 사용해 기존 연구된 하드웨어보다 적은 메모리 자원으로 구현되어 스케일러의 하드웨어에 적합한 구조임을 보인다.

The growth of the multimedia industry has led to the advent of digital devices utilizing images of varying resolutions. Accordingly, it is essential to adapt the resolution of the source image to match with the resolutions of the target digital device, while ensuring that the quality of the input image is preserved throughout this process. In this paper, we propose the implementation of a hardware system that performs image scaling using interpolation algorithms. The bicubic interpolation algorithm is employed as the interpolation algorithm, as it produces the highest quality image among the three most common methods. Each interpolated axis in the image can be operated independently to achieve asymmetric scaling in any desired ratio. The hardware of the proposed scaler satisfies real-time processing and is implemented with less memory resources than the previously studied hardware using the time allocation method, showing that it is a suitable structure for the hardware of the scaler.

키워드

과제정보

This was supported by Korea National University of Transportation in 2024.

참고문헌

  1. J. Dan, Z. Qu, X. Wang, and J. Gu, "A Disparity Feature Alignment Module for Stereo Image Super-Resolution," IEEE Signal Processing Letters, vol.28, pp.1285-1289, 2021. DOI: 10.1109/LSP.2021.3088050
  2. A. N. A. Rahim, S. N. Yaakob, R. Ngadiran and M. W. Nasruddin, "An analysis of interpolation methods for super resolution images," 2015 IEEE Student Conference on Research and Development, pp.72-77, 2015. DOI: 10.1109/SCORED.2015.7449432
  3. Y. Li, F. Qi and Y. Wan, "Improvements On Bicubic Image Interpolation," 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp.1316-1320, 2019. DOI: 10.1109/IAEAC47372.2019.8997600
  4. S. Han, S. Jung, and B. Kang, "Analysis of the Image Processing Speed by Line-Memory Type," Journal of IKEEE, vol.27, no.4, pp.127-133, 2023. DOI: 10.7471/ikeee.2023.27.4.494
  5. S. Jung, S. Han, and B. Kang, "Hardware Design of Bicubic Scaler Using Frequency Conversion Method," Journal of KIIT, vol.22, no.7, pp.75-81, 2024. DOI: 10.14801/jkiit.2024.22.7.75
  6. Y. Lee, N. Kim, J. Kim, and B. Min, "Millions to thousands issues through knowledge based SoC CDC Verification," in IEIE ISOCC, pp.569-572, 2012. DOI: 10.1109/ISOCC.2012.6407123
  7. D. Ngo, and B. Kang, "Taylor-Series-Based Reconfigurability of Gamma Correction in Hardware Designs," Electronics, vol.10, no.16, 2021. DOI: 10.3390/electronics10161959
  8. S. Han, S. Jung, J. Son, and B. Kang, "Hardware Design for Real-Time Processing of a Combinatorial Interpolation Scaler width Asymmetric Down-scaling and Up-scaling," Journal of IKEEE, vol.28, no.1, pp.26-32. 2024.
  9. U. Sara, M. Akter, and M. S. Uddin, "Image Quality Assessment through FSIM, SSIM, MSE and PSNR-A Comparative Study", Journal of Computer and Communications, vol.07, no.03, pp.8-18, Mar. 2019. DOI: 10.4236/jcc.2019.73002
  10. S. Han and B. Kang, "A Study of the Combinatorial Interpolation Algorithm for Scaler Hardware Design," Journal of IKEEE, vol.27, no.3, pp.296-302, 2023. DOI: 10.7471/ikeee.2023.27.3.296
  11. H. Moon and S. Ban, "VLSI Architecture of Digital Image Scaler Combining Linear Interpolation and Cubic Convolution Interpolation", Journal of Korea Multimedia Society, vol.51, no.3, pp.112-118, Mar. 2014. DOI: 10.5573/ieie.2014.51.3.112
  12. Xilinx, "ZCU106 Evaluation Board: User Guide (UG1244)," https://docs.xilinx.com/v/u/en-US/ug1244-zcu106
  13. Ngo. D, S. Lee, U. J. Kang, T. M. Ngo, G. D. Lee, and B. Kang, "Adapting a Dehazing System to Haze Conditions by Piece-Wisely Linearizing a Depth Estimator," Sensors, vol.22, no.5, pp.1957-1981, 2022. DOI: 10.3390/ s22051957
  14. K. Jack, Video Demystified: A Handbook for the Digital Engineer, 4th edition, Newnes, 2005.