DOI QR코드

DOI QR Code

77GHz FMCW 인캐빈 레이다를 이용한 운전자 상태모니터링 시스템 연구

Study on Driver Condition Monitoring Using 77GHz In-cabin FMCW Radar

  • 주경덕 ;
  • 오명준 ;
  • 김용명 ;
  • 조윤성 ;
  • 정영배
  • Gyeong-Deok Ju (Electronics Engineering, Hanbat National University) ;
  • Myeong-Jun Oh (Electronics Engineering, Hanbat National University) ;
  • Yong-Myeong Kim (Electronics Engineering, Hanbat National University) ;
  • Yun-Seong Jol (Electronics Engineering, Hanbat National University) ;
  • Young-Bae Jung (Electronics Engineering, Hanbat National University)
  • 투고 : 2024.08.20
  • 심사 : 2024.08.23
  • 발행 : 2024.09.30

초록

본 논문에서는 착용의 불편함이나 사생활 침해문제에 자유로운 FMCW(Frequency Modulation Continous Wave) 인캐빈(In-cabin) 레이다를 이용한 운전자 상태모니터링 시스템을 구현하였다. 77GHz 대역의 고정밀 레이다를 이용하여 운전 환경변화와 운전자의 상태(Condition)에 따른 눈 깜빡임 패턴변화를 적응형 다중 필터링 알고리즘을 사용해 탐지하도록 하였으며, 검출된 데이터를 통하여 눈 깜박임 횟수와 눈을 떴다가 감는데 소요되는 시간을 측정함으로써 졸음운전을 정확하게 판단하도록 하였다. 최근 날로 소형화되고 있는 고성능 레이다의 등장으로 차량 내 계기판이나 백미러 등에 매립이 가능하며, 운전자가 졸음 상태로 판단될 경우, 알람을 통해 운전자를 깨우거나 차량의 주행시스템과 연동하여 서행 및 비상 정차시킴으로써 사고방지와 운전자의 안전을 도모할 수 있다.

In this paper, we propose a driver condition monitoring system using FMCW in-cabin radar, which is free from wearing inconvenience and privacy issues. Using 77GHz high-precision radar, the system detects changes in eye blinking patterns according to changes in the driving environment and the driver's condition using an adaptive multiple filtering algorithm, and accurately determines drowsy driving by measuring the number of eye blinks and the time it takes to open and close the eyes through the detected data. With the emergence of high-performance radars that are becoming more and more miniaturized, it is possible to embed them in the instrument panel or rearview mirror of the vehicle, and if the driver is judged to be drowsy, it can wake up the driver through an alarm or interlock with the vehicle's driving system to slow down and make an emergency stop to prevent accidents and promote driver safety.

키워드

과제정보

This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004). This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2024-RS-2022-00156212) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

참고문헌

  1. MEDICAL WORLD NEWS:"Traffic accident statistics related to drowsy driving," https://www.medicalworldnews.co.kr/bbs/board.php?bo_table=pds&mcode=m1046v1b&wr_id=5548&page=0
  2. G. Sikander and S. Anwar, "Driver Fatigue Detection Systems: A Review," in IEEE Transactions on Intelligent Transportation Systems, vol.20, no.6, pp.2339-2352, 2019. DOI: 10.1109/TITS.2018.2868499
  3. J. Hu et al. "Blink Radar: Non-Intrusive Driver Eye-Blink Detection with UWB Radar," 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, pp. 1040-1050, 2022. DOI: 10.1109/ICDCS54860.2022.00104
  4. Cui Xu, Ying Zheng and Zengfu Wang, "Efficient eye states detection in real-time for drowsy driving monitoring system," 2008 International Conference on Information and Automation, Changsha, China, pp.170-17, 2008. DOI: 10.1109/ICINFA.2008.4607990
  5. Yoon Jaehyuk, Yoo Seongoh, Yang Jaewon, Lee Dongju "Multi-Target Detection Method Using FMCW and CW," J. Korean Inst. Electromagn. Eng. Sci. 2020; 31(1): 79-84. DOI: 10.5515/KJKIEES.2020.
  6. Y. Wang, Y. Shu and M. Zhou, "A Novel Eye Blink Detection Method using Frequency Modulated Continuous Wave Radar," 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Guangzhou, China, 2021, pp.1-3 DOI: 10.1109/iWEM53379.2021.9790529
  7. E. Cardillo, G. Sapienza, C. Li and A. Caddemi, "Head Motion and Eyes Blinking Detection: a mm-Wave Radar for Assisting People with Neurodegenerative Disorders," 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, pp.925-928, 2021. DOI: 10.23919/EuMC48046.2021.9338116