DOI QR코드

DOI QR Code

Comparing Electrical Characteristics of Ga2O3/4H-SiC Heterojunctions with Varying Thickness by Aerosol-Deposition

에어로졸 데포지션 방법으로 증착한 산화막 두께에 따른 갈륨옥사이드/실리콘 카바이드 다이오드의 전기적 특성

  • Hyun-Woo Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Ji-Soo Choi (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Young-Hun Cho (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Soo-Young Moon (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • 이현우 ;
  • 최지수 ;
  • 조영훈 ;
  • 문수영 ;
  • 이건희 ;
  • 구상모
  • Received : 2024.07.22
  • Accepted : 2024.08.23
  • Published : 2024.09.30

Abstract

Utilizing Aerosol Deposition technology, we deposited Ga2O3 films onto 4H-SiC substrates with thicknesses of 1 and 5㎛. Subsequently, we analyzed the impact of oxide film thickness variation on the electrical characteristics of diodes. Experimental findings revealed that thicker films exhibited device operation at lower voltages, whereas thinner films demonstrated comparatively steeper current flow. This underscores the critical importance of controlling film thickness for optimizing the smooth electrical characteristics of the film.

에어로졸 데포지션(Aerosol Deposition) 기술을 활용하여 4H-SiC(Silicon Carbide) 기판 상에 Ga2O3(Gallium Oxide) 막을 1㎛와 5㎛의 두께로 증착하였다. 이후에는 산화막 두께의 변화가 다이오드의 전기적 특성에 미치는 영향을 분석하였으며 실험 결과, 두꺼운 박막에서는 소자가 낮은 전압에서 동작하는 것을 확인했으나, 반면에 얇은 박막에서는 전류의 흐름이 비교적 더 가파르게 나타남이 측정되었다. 이를 통해, 박막의 원활한 전기적 특성을 조절하기 위해서는 박막의 두께가 중요함을 확인하였다.

Keywords

Acknowledgement

This work was supported by the Korea Evaluation Institute Of Industrial Technology (KEIT) (RS-2022-00154720), (RS-2022-00144027), and conducted by the Excellent researcher support project of Kwangwoon University in 2024.

References

  1. Zhou, H., Alghmadi, S., Si, M., Qiu, G., & Peide, D. Y, "Al2O3/β-Ga2O3(-201) Interface Improvement Through Piranha Pretreatment and Postdeposition Annealing," IEEE EDL, 37(11), 1411-1414, 2016. DOI: 10.1109/LED.2016.2609202
  2. Higashiwaki, Masataka. "β-Ga2O3 material properties, growth technologies, and devices: a review," AAPPS Bulletin 32(1), 3, 2022. DOI: 10.1007/s43673-021-00033-0
  3. Isabel Streicher, Stefano Leone, Lutz Kirste, Christian Manz, Patrik Stranak, Mario Prescher, Patrick Waltereit, Michael Mikulla, Rudiger Quay and Oliver Ambacher. "Enhanced AlScN/GaN heterostructures grown with a novel precursor by metal-organic chemical vapor deposition," pss RRL vol.17, no.2, 2023. DOI: 10.1002/pssr.202200387
  4. Saunders, R., Johnson, S. D., Schwer, D., Patterson, E. A., Ryou, H., & Gorzkowski, E. P. "A self-consistent scheme for understanding particle impact and adhesion in the aerosol deposition process," JTST, 30, 523-541, 2021. DOI: 10.1007/s11666-021-01164-4
  5. Akedo, Jun. "Room temperature impact consolidation and application to ceramic coatings: aerosol deposition method," JCS-Japan, 128(3), 101-116, 2020. DOI: 10.2109/jcersj2.19196
  6. Kim, H. K., Lee, S. H., Lee, S. G., & Lee, Y. H, "Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition," EML, 11, 388-397, 2015. DOI: 10.1007/s13391-015-4419-0