Acknowledgement
This work was supported by the Korea Evaluation Institute Of Industrial Technology (KEIT) (RS-2022-00154720), (RS-2022-00144027), and conducted by the Excellent researcher support project of Kwangwoon University in 2024.
References
- Zhou, H., Alghmadi, S., Si, M., Qiu, G., & Peide, D. Y, "Al2O3/β-Ga2O3(-201) Interface Improvement Through Piranha Pretreatment and Postdeposition Annealing," IEEE EDL, 37(11), 1411-1414, 2016. DOI: 10.1109/LED.2016.2609202
- Higashiwaki, Masataka. "β-Ga2O3 material properties, growth technologies, and devices: a review," AAPPS Bulletin 32(1), 3, 2022. DOI: 10.1007/s43673-021-00033-0
- Isabel Streicher, Stefano Leone, Lutz Kirste, Christian Manz, Patrik Stranak, Mario Prescher, Patrick Waltereit, Michael Mikulla, Rudiger Quay and Oliver Ambacher. "Enhanced AlScN/GaN heterostructures grown with a novel precursor by metal-organic chemical vapor deposition," pss RRL vol.17, no.2, 2023. DOI: 10.1002/pssr.202200387
- Saunders, R., Johnson, S. D., Schwer, D., Patterson, E. A., Ryou, H., & Gorzkowski, E. P. "A self-consistent scheme for understanding particle impact and adhesion in the aerosol deposition process," JTST, 30, 523-541, 2021. DOI: 10.1007/s11666-021-01164-4
- Akedo, Jun. "Room temperature impact consolidation and application to ceramic coatings: aerosol deposition method," JCS-Japan, 128(3), 101-116, 2020. DOI: 10.2109/jcersj2.19196
- Kim, H. K., Lee, S. H., Lee, S. G., & Lee, Y. H, "Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition," EML, 11, 388-397, 2015. DOI: 10.1007/s13391-015-4419-0