DOI QR코드

DOI QR Code

Liquid Crystal Orientation on LaGaO Thin Films Induced by a Brush Coating Process

브러시 코팅 공정에 의해 유도된 LaGaO 박막의 액정 배향

  • Byeong-Yun Oh (Research and Development Department, Cheomdanlab Inc.)
  • 오병윤
  • Received : 2024.07.16
  • Accepted : 2024.09.02
  • Published : 2024.09.30

Abstract

In this study, a lanthanum gallium oxide (LaGaO) solution was prepared using a sol-gel method. By simply forming a LaGaO thin film through adjusting the curing temperature after applying the solution onto the substrate using a brush coating process, the potential for use as a liquid crystal (LC) alignment film in the LC display industry was validated. Through optical microscope observation, it was confirmed that the LC molecules were uniformly aligned as the curing temperature of the LaGaO thin film increased. It was confirmed that the LaGaO thin film cured at 230℃ had low pretilt angle, and that LaGaO particles were formed in a single direction as observed through an atomic force microscope. Through X-ray photoelectron spectroscopy, it was found that the LaGaO metal oxide thin film was well formed. Finally, it has been confirmed that LaGaO metal oxide has the potential as a novel LC alignment film material, as it exhibits excellent electrical and optical properties, along with high optical transmittance.

본 연구에서는 졸-겔 방법으로 란타늄 갈륨 산화물(LaGaO) 용액을 제조하였다. 브러시 코팅 공정을 이용해서 기판에 용액을 코팅한 후 경화온도를 변화시켜 LaGaO 박막을 간단하게 형성함으로써, 액정디스플레이 산업에서 사용하는 액정 배향막으로서의 적용 가능성을 확인하였다. 편광 광학 현미경 관찰을 통해 LaGaO 박막의 경화온도가 높아짐에 따라 균일하게 액정분자가 정렬되는 것을 확인할 수 있었다. 230℃로 경화된 LaGaO 박막에서 낮은 선경사각을 가지며, 원자현미경을 통해 단일 방향으로 LaGaO 입자가 형성됨을 확인하였다. X-선 광전자 분광법을 통해 LaGaO 금속산화물 박막이 잘 형성됨을 알 수 있었다. 최종적으로 높은 광학 투과율과 함께 우수한 전기·광학적 특성이 나타남으로써 LaGaO 금속산화물이 신규 액정 배향막 소재로서의 가능성이 있음을 확인하였다.

Keywords

References

  1. B. Geffroy, P. l. Roy, and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polym. Int., vol.55, no.6, pp.572-582, 2006. https://doi.org/10.1002/pi.1974
  2. J. Song, H. Lee, E. G. Jeong, K. C. Choi, and S. Yoo, "Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond," Adv. Mater., vol. 32, no.35, pp.1907539, 2020. DOI: 10.1002/adma.201907539
  3. C. Yang, "State-led technological innovation of domestic firms in Shenzhen, China: Evidence from liquid crystal display (LCD) industry," Cities, vol.38, pp.1-10, 2014. DOI: 10.1016/j.cities.2013.12.005
  4. J.-F. Tsai, C.-P. Wang, M.-H. Lin, and S.-W. Huang, "Analysis of Key Factors for Supplier Selection in Taiwan's Thin-Film Transistor Liquid-Crystal Displays Industry," Mathematics, vol.9, no.4, pp.396, 2021. DOI: 10.3390/math9040396
  5. Y.-G. Park, D. Y. Cho, R. Kim, K. H. Kim, J. W. Lee, D. H. Lee, S. I. Jeong, N. R. Ahn, W.-G. Lee, J. B. Choi, M. J. Kim, D. Kim, S. Jin, D. G. Park, J. Kim, S. Choi, S. Bang, and J. W. Lee, "Defect Engineering for High Performance and Extremely Reliable a-IGZO Thin-Film Transistor in QD-OLED," Adv. Electron. Mater., vol.8, no.7, pp.2101273, 2022. DOI: 10.1002/aelm.202101273
  6. S. Takasugi, H.-J. Shin, M.-K. Chang, S.-M. Ko, H.-J. Park, J.-P. Lee, H.-S. Kim, and C.-H. Oh, "Advanced compensation technologies for large-sized UHD OLED TVs," J. Soc. Info. Disp., vol.24, no.7, pp.410-418, 2016. DOI: 10.1002/jsid.442
  7. Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light Sci. Appl., vol.9, no.1, pp.105, 2020. DOI: 10.1038/s41377-020-0341-9
  8. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nat. Photon., vol.7, no.5, pp.407-412, 2013. DOI: 10.1038/nphoton.2013.70
  9. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, "Atomic-beam alignment of inorganic materials for liquid-crystal displays," Nature, vol.411, no.6833, pp.56-59, 2001.
  10. D. W. Lee, J. H. Won, D. H. Kim, J. Y. Oh, D.-H. Kim, Y. Liu, and D.-S. Seo, "Well-ordered nanostructured organic/inorganic hybrid thin film construction via UV nanoimprint lithography applicable to liquid crystal systems," J. Appl. Polym. Sci., vol.139, no.26, pp.e52445, 2022. DOI: 10.1002/app.52445
  11. D. H. Kim, J. H. Lee, D. W. Lee, J. Y. Oh, J. Won, and D.-S. Seo, "Physicochemically constructed zinc oxide and UV-curable polymer hybrid films for liquid crystal system," J. Mol. Liq., vol.357, pp.119155, 2022. DOI: 10.1016/j.molliq.2022.119155
  12. Y.-G. Kang, H.-J. Kim, H.-G. Park, B.-Y. Kim, and D.-S. Seo, "Tin dioxide inorganic nanolevel films with different liquid crystal molecular orientations for application in liquid crystal displays (LCDs)," J. Mater. Chem., vol.22, no.31, pp.15969-15975, 2012. DOI: 10.1039/C2JM13689A
  13. B.-Y. Oh, W.-K. Lee, Y.-H. Kim, and D.-S. Seo, "Zinc oxide nanolevel surface transformation for liquid crystal orientation by ion bombardment," J. Appl. Phys., vol.105, no.5, pp.054506, 2009. DOI: 10.1063/1.3080159
  14. S. S. Chae, B. H. Hwang, W. S. Jang, J. Y. Oh, J. H. Park, S. J. Lee, K. M. Song, and H. K. Baik, "Homogeneous liquid crystal alignment on inorganic-organic hybrid silica thin films derived by the sol-gel method," Soft Matter, vol. 8, no.5, pp.1437-1442, 2012. DOI: 10.1039/C1SM06592K
  15. Y.-H. Kim, B.-Y. Kim, H.-G. Park, J.-H. Kwon, K.-K. Paek, B.-K. Ju, and D.-S. Seo, "A Pixel-Isolated Flexible Liquid Crystal Display with a Homogeneous Alignment on an Amorphous ZrO2 Thin Film," Electrochem. Solid-State Lett., vol.13, no.12, pp.J143-J145, 2010. DOI: 10.1149/1.3492409/pdf
  16. D. W. Lee, E. M. Kim, G. S. Heo, D. H. Kim, J. Y. Oh, D.-H. Kim, Y. Liu, and D.-S. Seo, "Oriented Yttrium Strontium Tin Oxide Micro/Nanostructures Induced by Brush Coating for Low-Voltage Liquid Crystal Systems," ACS Appl. Nano Mater., vol.5, no.5, pp.6925-6934, 2022. DOI: 10.1021/acsanm.2c00917
  17. D. H. Kim, D. W. Lee, J. Y. Oh, J. Won, Y. Liu, and D.-S. Seo, "Self-aligned liquid crystals and enhanced electrooptical properties on solution-processed aluminum gallium tin zinc oxide surfaces," J. Mater. Res. Technol., vol.20, pp.291-302, 2022.
  18. M. Hasegawa, "Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion," Polymers, vol.9, no.10, pp.520, 2017. DOI: 10.3390/polym9100520
  19. S.-Y. Yang, "Advanced Polyimide Materials - Synthesis, Characterization and Applications," pp. 195-255, Elsevier, 2018.
  20. S. C. Kitson, E. G. Edwards, and A. D. Geisow, "Designing liquid crystal alignment surfaces," Appl. Phys. Lett., vol.92, no.7, pp.073503, 2008. DOI: 10.1063/1.2884266
  21. J.-Y. Cao, K.-W. Lin, T.-M. Feng, and C.-T. Wang, "Cost-effective photolithography-based dual liquid crystal alignment for versatile electro-optic applications," J. Mol. Liq., vol.395, pp.123882, 2024. DOI: 10.1016/j.molliq.2023.123882
  22. B.-Y. Oh, K.-M. Lee, B.-Y. Kim, Y.-H. Kim, J.-W. Han, J.-M. Han, S.-K.Lee, and D.-S. Seo, "Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation," J. Appl. Phys., vol.104, no.6, pp.064502, 2008. DOI: 10.1063/1.2978364
  23. K.-H. Chen, W.-Y. Chang, and J.-H. Chen, "Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry," Opt. Express, vol.17, no.16, pp. 14143-14149, 2009. DOI: 10.1364/OE.17.014143
  24. T. J. Scheffer and J. Nehring, "Accurate determination of liquidcrystal tilt bias angles," J. Appl. Phys., vol.48, no.5, pp.1783-1792. May. 1977. DOI: 10.1063/1.323928
  25. W. Zhan, Y. Nie, Z. Wu, J. Li, Y. Ding. C. Ma, and D. Chen, "Novel rare earth ions doped Bi2WO6/rGO hybrids assisted by ionic liquid with enhanced photocatalytic activity under natural sunlight," J. Sol-Gel Sci. Technol., vol.98, pp. 84-94, 2021. DOI: 10.1007/s10971-021-05494-1
  26. M. Uma, N. Balaram, P. R. S. Reddy, V. Janardhanam, V. R. Reddy, H.-J. Yun, S.-N. Lee, and C.-J. Choi, "Structural, Chemical and Electrical Properties of Au/La2O3/n-GaN MIS Junction with a High-k Lanthanum Oxide Insulating Layer," J. Electron. Mater., vol.48, no.7, pp.4217, 2019. DOI: 10.1007/s11664-019-07193-8
  27. J. P. H. Li, X. Zhou, Y. Pang, L. Zhu, E. I. Vovk, L. Cong, A. P. v. Bavel, S. Li, and Y. Yang, "Understanding of binding energy calibration in XPS of lanthanum oxide by in situ treatment," Phys. Chem. Chem. Phys., vol.21, pp.22351-22358, 2019. DOI: 10.1039/C9CP04187G
  28. A. Mahmoodinezhad, C. Janowitz, F. Naumann, P. Plate, H. Gargouri, K. Henkel, D. Schmeisser, and J. I. Flege, "Low-temperature growth of gallium oxide thin films by plasma-enhanced atomic layer deposition," J. Vac. Sci. Technol. A, vol.38, no.2, pp.022404, 2020. DOI: 10.1116/1.5134800
  29. N. Iqbal, I. Khan, Z. H. Yamani, and A. Qurashi, "Sonochemical Assisted Solvothermal Synthesis of Gallium Oxynitride Nanosheets and their Solar-Driven Photoelectrochemical Water-Splitting Applications," Sci. Rep., vol.6, no.1, pp. 32319, 2016. DOI: 10.1038/srep32319
  30. C. I. M. Rodriguez, M. A. L. Alvarez, J. d. J. F. Rivera, G. G. C. Arizaga, and C. R. Michel, "α-Ga2O3 as a Photocatalyst in the Degradation of Malachite Green," ECS J. Solid State Sci. Technol., vol.8, no.7, pp.Q3180-Q3186, Mar. 2019. DOI: 10.1149/2.0351907jss
  31. C. Huang, W. Mu, H. Zhou, Y. Zhu, X. Xu, Z. Jia, L. Zheog, and X. Tao, "Effect of OH- on chemical mechanical polishing of β-Ga2O3 (100) substrate using an alkaline slurry," RSC Adv., vol. 8, no.12, pp.6544, 2018. DOI: 10.1039/c7ra11570a
  32. T. A. Chowdhury, "XPS Depth Profile Study of Sprayed Ga2O3 Thin Films," Engineering, vol. 15, no.8, pp.459-466, 2023. DOI: 10.4236/eng.2023.158035
  33. A. Sharma, M. Varshney, H. Saraswat, S. Chaudhary, J. Parkash, H.‑J. Shin, K.‑H. Chae, and S.‑O. Won, "Nano-structured phases of gallium oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): fabrication, structural, and electronic structure investigations," Int. Nano Lett., vol.10, pp.71-79, 2020.
  34. Y. Yao, S. Okur, L. A. M. Lyle, G. S. Tompa, T. Salagaj, N. Sbrockey, R. F. Davis, and L. M. Porter, "Growth and Characterization of α-, β-, and ε-Ga2O3 Epitaxial Layers on Sapphire," Mater. Res. Lett., vol.6, no.5, pp.268-275, 2018. DOI: 10.1080/21663831.2018.1443978
  35. K. Mustofa, Y. Yulizar, A. Saefumillah, and D. O. B. Apriandanu, "La2O3 nanoparticles formation using Nothopanax scutellarium leaf extract in two-phase system and photocatalytic activity under UV light irradiation," IOP Conf. Ser.: Mater. Sci. Eng., vol.902, pp.012018, 2020. DOI: 10.1088/1757-899x/902/1/012018
  36. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, "Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors," Appl. Phys. Lett., vol.90, no.3, pp.031912, 2007. DOI: 10.1063/1.2432946
  37. J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, "Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process," Ceram. Int., vol.32, no.5, pp.587-591, 2006. DOI: 10.1016/j.ceramint.2005.04.015
  38. H.-G. Park, J.-J. Lee, K.-Y. Dong, B.-Y. Oh, Y.-H. Kim, H.-Y. Jeong, B.-K. Ju, and D.-S. Seo, "Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography," Soft Matter, vol.7, no.12, pp.5610-5614, 2011. DOI: 10.1039/c1sm05083d
  39. J.-J. Lee, H.-G. Park, J.-J. Han, D.-H. Kim, and D.-S. Seo, "Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation," J. Mater. Chem. C, vol.1, no.41, pp.6824-6828, 2013. DOI: 10.1039/C3TC31470G