DOI QR코드

DOI QR Code

A Study about Decrease of Oxygen Permeability with Adding Glass Flakes and (3-Aminopropyl)triethoxysilane on Polyimide Films

Glass Flake 및 (3-Aminopropyl)triethoxysilane 첨가에 따른 폴리이미드 필름의 산소투과도 감소 연구

  • Ha-Yoon Nah (Department of Materials Science and Engineering, Yonsei University) ;
  • Taehee Kim (Department of Materials Science and Engineering, Yonsei University) ;
  • Haryeong Choi (Department of Materials Science and Engineering, Yonsei University) ;
  • Ji-Seoung Kim (Department of Materials Science and Engineering, Yonsei University) ;
  • Won-Jun Lee (Department of Materials Science and Engineering, Yonsei University) ;
  • Eunkyung Jeon (Agency for Defense Development) ;
  • Joon Hyuk Lee (Agency for Defense Development) ;
  • Hyung-Ho Park (Department of Materials Science and Engineering, Yonsei University)
  • 나하윤 (연세대학교 신소재공학과 ) ;
  • 김태희 (연세대학교 신소재공학과 ) ;
  • 최하령 (연세대학교 신소재공학과 ) ;
  • 김지승 (연세대학교 신소재공학과 ) ;
  • 이원준 (연세대학교 신소재공학과 ) ;
  • 전은경 (국방과학연구소 ) ;
  • 이준혁 (국방과학연구소 ) ;
  • 박형호 (연세대학교 신소재공학과 )
  • Received : 2024.09.04
  • Accepted : 2024.09.27
  • Published : 2024.09.30

Abstract

Polyimide has advantages that are different with other polymers, such as high thermal stability, heat resistance, and high chemical resistance. Various application methods for Polyimide have been studied. In this study, research was conducted to manufacture Polyimide films. While implementing Polyimide films with excellent adhesion and pencil hardness through optimized manufacturing conditions, the applicability as a packaging material was considered by adding glass flakes to reduce oxygen permeability. As a result, Polyimide films with glass flakes and (3-Aminopropyl)triethoxysilane have a thickness of about 50 ㎛ were uniformly implemented, and it was confirmed that the adhesion of Polyimide films was 4B, pencil hardness was 5H, and oxygen permeability was below 8.795 × 10-9 cc/s, respectively.

Polyimide는 열안정성과 내열성이 우수하고 뛰어난 내화학성을 가지는 등 기존 폴리머들과는 차별화된 장점을 가진다. 이러한 Polyimide를 다양하게 응용하는 방안이 연구되고 있는데, 본 연구에서는 이러한 Polyimide를 필름으로 제조하기 위한 연구를 수행하였다. 최적화된 제조 조건을 통해 부착력과 연필 경도가 우수한 Polyimide 필름을 구현하는 한편, glass flake를 첨가하여 산소 투과도도 감소시켜 패키징 재료로의 응용 가능성을 모색하였다. 그 결과, 약 50 ㎛ 두께의 glass flake 및 (3-Aminopropyl)triethoxysilane이 첨가된 Polyimide 필름을 균질하게 구현할 수 있었으며, 해당 Polyimide 필름의 부착력은 4B, 연필 경도는 5H, 그리고 산소 투과도는 8.795 × 10-9 cc/s 미만임을 확인하였다.

Keywords

Acknowledgement

이 성과는 국방과학연구소의 위탁연구과제인 "섬유강화 에어로젤을 비롯한 고성능 단열재 합성, 고온 섬유복합재 기밀코팅 및 고온 단열특성 분석"을 수행하여 획득되었음 (과제번호: UI2200411D).

References

  1. S.-Y. Yan and L.-L. Yuan, "Chapter 1 - Advanced Polyimide Films", Advanced Polyimide Materials, 1-66 (2018)
  2. Z. Wu, J. He, H. Yang, and S. Yang, "Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties", Polymers, 14(6), 1269 (2022)
  3. K. Ruan, Y. Guo, and J. Gu, "Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness", Macromolecules 54, 4934-4944 (2021)
  4. W. Chen, W. Chen, B. Zhang, S. Yang, and C.-Y. Liu, "Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization", Polymer, 109, 205-215 (2017)
  5. G. M. Bower and L. W. Frost, "Aromatic polyimides", Journal of Polymer Science Part A, 1(10), 3135-3150 (1963)
  6. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, and K. L. Olivier, "Aromatic polypyromellitimides from aromatic polyamic acids", Journal of Polymer Science Part A, 3(4), 1373-1390 (1965)
  7. C. Feger, "Curing of polyimides", Polymer Engineering Science, 29(5), 347-351 (1989)
  8. J. R. Ojeda, J. Mobley, and D. C. Martin, "Physical and chemical evolution of PMDA-ODA during thermal imidization", Journal of Polymer Science Part B, 33(4), 559-569 (1995)
  9. M.-H. Tsai, I.-H. Tseng, Y.-C. Huang, H.-P. Yu, and P.-Y. Chang, "Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite", Advanced Engineering Materials, 18(4), 582-590 (2016)
  10. H. W. Liu, K. F. Xie, Z. B. Yang, and H. M. Dai, "The Advantages of Basalt Glass Flake Coating for Marine Anticorrosion", Advanced Materials Research, 332-334, 1619-1622 (2011)
  11. Y.-H. Kim, H.-S. Kim, and S.-K. Kwon, "Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Based on Twisted Biphenyl Dianhydride and Spirobifluorene Diamine", Macromolecules 38, 19, 7950- 7956 (2005)
  12. Q.-P. Liu, L.-X. Gao, Z.-W. Gao, and L. Yang, "Preparation and characterization of polyimide/silica nanocomposite spheres", Materials Letters, 61(23-24), 4456-4458 (2007)
  13. N. Jain, S. K. Tripathi, and M. Nasim, "Preparation and Characterization of Aminopropylsilatrane Endcapped Polyimide Films", International Journal of Polymeric Materials and Polymeric Biomaterials, 63(4), 178-184 (2014)
  14. H. Xu, X. Cao, Y. Shi, T. Cong, H. Liu, and Y. Gao, "In situ formation of POSS layer on the surface of polyimide film and anti-atomic oxygen of SiO2/POSS coatings", Progress in Organic Coatings, 182, 107703 (2023)
  15. H. Wang, W. Zhong, P. Xu, and Q. Du, "Properties of Polyimide/Silica Nanohybrids from Silicic Acid Oligomer", Macromolecular Materials and Engineering, 289(9), 793-799 (2004)
  16. G. Wang and J. Yang, "Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure", Progress in Organic Coatings, 70(2-3), 150-156 (2011)
  17. N. D. Ghatge and N. N. Maldar, "Polyimides from dianhydride and diamine: structure property relations by thermogravimetric analysis (t.g.a.)", Polymer, 25(9), 1353-1356 (1984)
  18. L. Li, C. Guan, A. Zhang, D. Chen, and Z. Qing, "Thermal stabilities and the thermal degradation kinetics of polyimides", Polymer Degradation and Stability, 84(3), 369-373 (2004)
  19. Z, Wu, J. He, H. Yang, and S. Yang, "Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties", Polymers, 14(6), 1269 (2022)
  20. T. Agag and T. Kakeichi, "Synthesis and characterization of epoxy film cured with reactive polyimide", Polymer, 40(23), 6557-6563 (1999)
  21. H. M. S. Mehr, T. J. Hammer, and M. D. Soucek, "Polyimide-polyester hybrid UV-curable powder coating", Journal of Coatings Technology and Research, 18, 1445-1459 (2021)
  22. H. Kim, Y.-R. Kim, J. Lee, H. Lee, Y. Jeon, S. Park, Y.-S. Kim, H.-M. Seong, and G. Kwak, "Highly tough, colorless, transparent polyamide-imide films from one reaction vessel without purification", Macromolecular Research, 31, 213-222 (2023)
  23. X. Wu, J. Liu, G. Jiang, Y. Zhang, C. Guo, Y. Zhang, L. Qi, and X. Zhang, "Highly transparent preimidized semi-alicyclic polyimide varnishes with low curing temperatures and desirable processing viscosities at high solid contents: preparation and applications for LED chip passivation", Journal of Materials Science: Materials in Electronics, 30, 549-560 (2019)
  24. S. Mazinani, S. Darvishmanesh, R. Ramazani, and B. V. Bruggen, "Miscibility of polyimide blends: Physicochemical characterization of two high performance polyimide polymers", Reactive and Functional Polymers, 111, 88-101 (2017)
  25. D. Mao, G. Lv, G. Gao, and B. Fan, "Fabrication of polyimide films with imaging quality using a spin-coating method for potential optical applications", Journal of Polymer Engineering, 39(10), 917-925 (2019)
  26. H. J. Kim, Y. J. Park, J.-H. Choi, H. S. Han, and Y. T. Hong, "Surface modification of polyimide film by coupling reaction for copper metallization", Journal of Industrial and Engineering Chemistry", 15(1), 23-30 (2009)
  27. Y. Liao, B. Cao, W.-C. Wang, L. Zhang, D. Wu, and R. Jin, "A facile method for preparing highly conductive and reflective surface-silvered polyimide films", Applied Surface Science, 255(19), 8207-8212 (2009)
  28. Z. Wu, D. Wu, W. Yang, and R. Jin, "Preparation of highly reflective and conductive metallized polyimide films through surface modification: processing, morphology and properties", Royal Society of Chemistry, 16, 310-316 (2006)
  29. L. J. Rooyen, J. Karger-Kocsis, O. C. Vorster, and L. D. Kock, "Helium gas permeability reduction of epoxy composite coatings by incorporation of glass flakes", Journal of Membrane Science, 430, 203-210 (2013)
  30. G. Yan, M. Wang, T. Sun, X. Li, G. Wang, and W. Yin, "Anti-Corrosion Property of Glass Flake Reinforced Chemically Bonded Phosphate Ceramic Coatings", Materials, 12(13), 2082 (2019)
  31. I. A. Channa, J. Ashfaq, S. J. Gilani, A. D. Chandio, S. Yusuf, M. A. Makhdoom, and M. N. Jumah, "Sustainable and Eco-Friendly Packaging Films Based on Poly (Vinyl Alcohol) and Glass Flakes", Membranes, 12(7), 701 (2022)
  32. L. Zhai, G. Li, Y. Xu, M. Xiao, S. Wang, and Y. Meng, "Poly (propylene carbonate)/aluminum flake composite films with enhanced gas barrier properties", Applied Polymer, 132(11), 41663 (2015)
  33. Z. Shao, P. Ren, T. Jia, B. Lei, Z. Feng, H. Gu, S. Chen, P. Zhang, and G. Meng, "High-pressure induced acceleration pathways for water diffusion in heavy duty anticorrosion coatings under deep ocean environment: (I) The samples subjected to high-pressure pre-processing", Progress in Organic Coatings, 170, 106948 (2022)
  34. W. Tian, L. Liu, F. Meng, Y. Liu, Y. Li, and F. Wang, "The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure", Corrosion Science, 85, 81-92 (2014)
  35. T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang, W. Zhang, Y. Abdi, L. Wang, B.-X. Lei, and W.-Q. Wu, "Interfacial Linkage and Carbon Encapsulation Enable Full Solution-Printed Perovskite Photovoltaics with Prolonged Lifespan", Angewandte Chemie International Edition, 60(44), 23735-23742 (2021)
  36. Z. Chen, J. Zhao, C. Jin, Y. Yuan, Y. Zhang, M. Tatoulian, and X. Rao, "Plasma deposited APTES: A potential film for biomedical application", Materials Letters, 264, 127350 (2020)