DOI QR코드

DOI QR Code

Study on predicting durability degradation factors of marine structures based on artificial neural network learning

인공 신경망 학습 기반 해양 구조물 내구성 열화 인자 예측 연구

  • 전동호 (동아대학교 건설시스템공학과)
  • Published : 2024.09.30

Abstract

Keywords

References

  1. L. Schueremans, D. Van Gemert, S. Giessler., 2007. Chloride penetration in RC-structures in marine environment-long term assessment of a preventive hydrophobic treatment. Construction and Building Materials, 21, pp. 1238-1249.
  2. J. Liu, G. Ou, Q. Qiu, F. Xing, K. Tang, J. Zeng., 2018. Atmospheric chloride deposition in field concrete at coastal region. Construction and Building Materials, 190, pp. 1015-1022.
  3. X. Lu, H. Guan, H. Sun, Y.i. Li, Z. Zheng, Y. Fei, Z. Yang, L. Zuo., 2021. A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24. Frontiers of Structural and Civil Engineering, 15 (5), pp. 1097-1110.
  4. H. Chen, H. Cui, Z. He, L. Lu, Y. Huang, 2021. Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere. Materials Chemistry and Physics. 259, pp 123971.
  5. T. Young, D. Hazarika, S. Poria, E. Cambria. 2018, Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13, pp. 55-75.
  6. J. Liu, G. Ou, Q. Qiu, F. Xing, K. Tang, J. Zeng, 2018. Atmospheric chloride deposition in field concrete at coastal region, Construction and Building Materials, 190, pp. 1015-1022,
  7. D Jeon, J Jung, J Park, J Min, JE Oh, J Moon, JS Lee, S Yoon., 2022. Predicting airborne chloride deposition in marine bridge structures using an artificial neural net work model. Construction and Building Materials 337, pp. 127623.